
Acceleration Methods

Alexandre d’Aspremont
CNRS & Ecole Normale Supérieure, Paris

aspremon@ens.fr

Damien Scieur
Samsung SAIT AI Lab & Mila, Montreal

damien.scieur@gmail.com

Adrien Taylor
INRIA & Ecole Normale Supérieure, Paris

adrien.taylor@inria.fr

Last compiled: September 19, 2024

Typos and Errata

We have built a website to display all identified typos and errata.
You can visit it at: https://accelerationmethods.github.io/AccelerationMethodsWebsite/.
We encourage the reader to communicate any additional typos or errors to us.

https://accelerationmethods.github.io/AccelerationMethodsWebsite/

Contents

1 Introduction 2

2 Chebyshev Acceleration 5
2.1 Introduction . 5
2.2 Optimal Methods and Minimax Polynomials 7
2.3 The Chebyshev Method . 9
2.4 Notes and References . 16

3 Nonlinear Acceleration 18
3.1 Introduction . 18
3.2 Nonlinear Acceleration for Quadratic Minimization 20
3.3 Regularized Nonlinear Acceleration Beyond Quadratics 27
3.4 Extensions . 33
3.5 Globalization Strategies and Speeding-up Heuristics 35
3.6 Notes and References . 35

4 Nesterov Acceleration 37
4.1 Introduction . 38
4.2 Gradient Method and Potential Functions 40
4.3 Optimized Gradient Method . 43
4.4 Nesterov’s Acceleration . 50
4.5 Acceleration under Strong Convexity . 57
4.6 Recent Variants of Accelerated Methods . 65
4.7 Practical Extensions . 72
4.8 Continuous-time Interpretations . 90
4.9 Notes and References . 95

3

4

5 Proximal Acceleration and Catalysts 100
5.1 Introduction . 100
5.2 Proximal Point Algorithm and Acceleration 101
5.3 Güler and Monteiro-Svaiter Acceleration . 105
5.4 Exploiting Strong Convexity . 108
5.5 Application: Catalyst Acceleration . 112
5.6 Notes and References . 119

6 Restart Schemes 122
6.1 Introduction . 122
6.2 Hölderian Error Bounds . 125
6.3 Optimal Restart Schemes . 128
6.4 Robustness and Adaptivity . 129
6.5 Extensions . 130
6.6 Calculus Rules . 132
6.7 Restarting Other First-Order Methods . 133
6.8 Application: Compressed Sensing . 134
6.9 Notes and References . 135

Appendices 137

A Useful Inequalities 138
A.1 Smoothness and Strong Convexity in Euclidean spaces 138
A.2 Smoothness for General Norms and Restricted Sets 143

B Variations on Nesterov Acceleration 145
B.1 Relations between Acceleration Methods . 145
B.2 Conjugate Gradient Method . 149
B.3 Acceleration Without Monotone Backtracking 153

C On Worst-case Analyses for First-order Methods 160
C.1 Principled Approaches to Worst-case Analyses 160
C.2 Worst-case Analysis as Optimization/Feasibility Problems 161
C.3 Analysis of Gradient Descent via Linear Matrix Inequalities 164
C.4 Accelerated Gradient Descent via Linear Matrix Inequalities 168
C.5 Notes and References . 169

Acknowledgements 171

References 172

1

ABSTRACT
This monograph covers some recent advances in a range of acceleration
techniques frequently used in convex optimization. We first use quadratic
optimization problems to introduce two key families of methods, namely
momentum and nested optimization schemes. They coincide in the quadratic
case to form the Chebyshev method.
We discuss momentum methods in detail, starting with the seminal work
of Nesterov (1983) and structure convergence proofs using a few master tem-
plates, such as that for optimized gradient methods, which provide the key
benefit of showing how momentum methods optimize convergence guarantees.
We further cover proximal acceleration, at the heart of the Catalyst and Accel-
erated Hybrid Proximal Extragradient frameworks, using similar algorithmic
patterns.
Common acceleration techniques rely directly on the knowledge of some
of the regularity parameters in the problem at hand. We conclude by dis-
cussing restart schemes, a set of simple techniques for reaching nearly optimal
convergence rates while adapting to unobserved regularity parameters.

1
Introduction

Optimization methods are a core component of the modern numerical toolkit. In many
cases, iterative algorithms for solving convex optimization problems have reached a level
of efficiency and reliability comparable to that of advanced linear algebra routines. This
is largely true for medium scale-problems where interior point methods reign supreme,
but less so for large-scale problems where the complexity of first-order methods is not as
well understood and efficiency remains a concern.

The situation has improved markedly in recent years, driven in particular by the
emergence of a number of applications in statistics, machine learning, and signal process-
ing. Building on Nesterov’s path-breaking algorithm from the 80’s, several accelerated
methods and numerical schemes have been developed that both improve the efficiency
of optimization algorithms and refine their complexity bounds. Our objective in this
monograph is to cover these recent developments using a few master templates.

The methods described in this manuscript can be arranged in roughly two categories.
The first, stemming from the work of Nesterov (1983), produces variants of the gradient
method with accelerated worst-case convergence rates that are provably optimal under
classical regularity assumptions. The second uses outer iteration (a.k.a. nested) schemes
to speed up convergence. In this second setting, accelerated schemes run both an inner
loop and an outer loop, with the inner iterations being solved by classical optimization
methods, and the outer loop containing the acceleration mechanism.

Direct acceleration techniques. Ever since the original algorithm by Nesterov (1983),
the acceleration phenomenon was regarded as somewhat of a mystery. While accelerated
gradient methods can be seen as iteratively building a model for the function and using
it to guide gradient computations, the argument is essentially algebraic and is simply an
effective exploitation of regularity assumptions. This approach of collecting inequalities

2

3

induced by regularity assumptions and cleverly chaining them to prove convergence was
also used in e.g., (Beck and Teboulle, 2009a), to produce an optimal proximal gradient
method. There too, however, the proof yielded little evidence as to why the method is
actually faster.

Fortunately, we are now better equipped to push the proof mechanisms much further.
Recent advances in the programmatic design of optimization algorithms allow us to
design and analyze algorithms by following a more principled approach. In particular, the
performance estimation approach, pioneered by Drori and Teboulle (2014), can be used
to design optimal methods from scratch, selecting algorithmic parameters to optimize
worst-case performance guarantees (Drori and Teboulle, 2014; Kim and Fessler, 2016).
Primal dual optimality conditions on the design problem then provide a blueprint for the
accelerated algorithm structure and for its convergence proof.

Using this framework, acceleration is no longer a mystery: it is the main objective in
the design of the algorithm. We recover the usual “soup of regularity inequalities” that
forms the template of classical convergence proofs, but the optimality conditions of the
design problem explicitly produce a method that optimizes the convergence guarantee. In
this monograph, we cover accelerated first-order methods using this systematic template
and describe a number of convergence proofs for classical variants of the accelerated
gradient method, such as those of Nesterov (1983; 2003), Beck and Teboulle (2009a) and
Tseng (2008) as well as more recent ones (Kim and Fessler, 2016).

Nested acceleration schemes. The second category of acceleration techniques that
we cover in this monograph is composed of outer iteration schemes, in which classical
optimization algorithms are used as a black-box in the inner loop and acceleration is
produced by an argument in the outer loop. We describe three acceleration results of
this type.

The first scheme is based on nonlinear acceleration techniques. Based on arguments
dating back to (Aitken, 1927; Wynn, 1956; Anderson and Nash, 1987), these techniques
use a weighted average of iterates to extrapolate a better candidate solution than the last
iterate. We begin by describing the Chebyshev method for solving quadratic problems,
which interestingly qualifies both as a gradient method and as an outer iteration scheme.
It takes its name from the use of Chebyshev polynomial coefficients to approximately
minimize the gradient at the extrapolated solution. The argument can be extended to
non-quadratic optimization problems provided the extrapolation procedure is regularized.

The second scheme, due to (Güler, 1992; Monteiro and Svaiter, 2013; Lin et al., 2015)
relies on a conceptual accelerated proximal point algorithm, and uses classical iterative
methods to approximate the proximal point in an inner loop. In particular, this framework
produces accelerated gradient methods (in the same sense as Nesterov’s acceleration)
when the approximate proximal points are computed using linearly converging gradient-
based optimization methods, taking advantage of the fact that the inner problems are
always strongly convex.

Finally, we describe restart schemes. These techniques exploit regularity properties

4 Introduction

called Hölderian error bounds, which extend strong convexity properties near the optimum
and hold almost generically, to improve the convergence rates of most first-order methods.
The parameters of the Hölderian error bounds are usually unknown, but the restart
schemes are robust: that is, they are adaptive to the Hölderian parameters and their
empirical performance is excellent on problems with reasonable precision targets.

Content and organization. We present a few convergence acceleration techniques that
are particularly relevant in the context of (first-order) convex optimization. Our summary
includes our own points of view on the topic and is focused on techniques that have
received substantial attention since the early 2000’s, although some of the underlying
ideas are much older. We do not pretend to be exhaustive, and we are aware that valuable
references might not appear below.

The sections can be read nearly independently. However, we believe the insights of some
sections can benefit the understanding of others. In particular, Chebyshev acceleration
(Section 2) and nonlinear acceleration (Section 3) are clearly complementary readings.
Similarly, Chebyshev acceleration (Section 2) and Nesterov acceleration (Section 4),
Nesterov acceleration (Section 4) and proximal acceleration (Section 5), as well as Nesterov
acceleration (Section 4) and restart schemes (Section 6) certainly belong together.

Prerequisites and complementary readings. This monograph is not meant to be a
general-purpose manuscript on convex optimization, for which we refer the reader to the
now classical references (Boyd and Vandenberghe, 2004; Bonnans et al., 2006; Nocedal
and Wright, 2006). Other directly related references are provided in the text.

We assume the reader to have a working knowledge of base linear algebra and convex
analysis (such as of subdifferentials), as we do not detail the corresponding technical
details while building on them. Classical references on the latter include (Rockafellar,
1970; Rockafellar and Wets, 2009; Hiriart-Urruty and Lemaréchal, 2013).

2
Chebyshev Acceleration

While “Chebyshev polynomials are everywhere dense in numerical analysis,” we would
like to argue here that Chebyshev polynomials also provide one of the most direct and
intuitive explanations for acceleration arguments in first-order methods. That is, one can
form linear combinations of past gradients for optimizing a worst-case guarantee on the
distance to an optimal solution. In quadratic optimization, these linear combinations
emerge from a Chebyshev minimization problem, whose solution can also be computed
iteratively, thereby yielding an algorithm called the Chebyshev method (Nemirovsky and
Polyak, 1984). The Chebyshev method traces its roots to at least Flanders and Shortley
(1950), who credit Tuckey and Grosch. Its recurrence matches asymptotically the one of
the heavy-ball method and is detailed below.

2.1 Introduction

In this section, we demonstrate basic acceleration results on quadratic minimization
problems. In such problems, optimal points are the solutions of a linear system, and the
basic gradient method can be seen as a simple iterative solver for this linear system. In
this context, acceleration methods can be obtained using a classical argument involving
Chebyshev polynomials.

Analyzing this simple scenario is useful in two ways. First, recursive formulations of the
Chebyshev argument yield a basic algorithmic template for designing accelerated methods
and provide first approach to their structures, such as the presence of a momentum term.
Second, the arguments are robust to perturbations of the quadratic function f and hence
apply in more generic contexts. This property enables acceleration in a wider range of
applications, which we cover later in the Section 3 and Section 4.

For now, consider the following unconstrained quadratic minimization problem

minimize
{
f(x) , 1

2〈x; Hx〉 − 〈b;x〉
}

(2.1)

5

6 Chebyshev Acceleration

in the variable x ∈ Rd, where H ∈ Sd (the set of symmetric matrices of size d× d) is the
Hessian of f . We further assume that f is both smooth and strongly convex, i.e., that
there exist some L > µ > 0 such that µI � H � LI. The reasoning of this section readily
extends to the case where µ is the smallest nonzero eigenvalue of H. We start by analyzing
the convergence of the fixed step gradient method (Algorithm 1) for solving (2.1).

Algorithm 1 Gradient method
Input: A differentiable convex function f , initial point x0, step size γ > 0, budget N .
1: for k = 1, . . . , N do
2: xk = xk−1 − γ∇f(xk−1)
3: end for

Output: Approximate solution xN .

For problem (2.1), the iteration reads

xk+1 = (I− γH)xk + γb,

and calling x? the optimum of problem (2.1) (satisfying Hx? = b) yields

xk+1 − x? = (I− γH)(xk − x?). (2.2)

This means the iterates of gradient descent xk − x? can be computed from x0 − x? via
xk − x? = PGrad

k (H)(x0 − x?) using the matrix polynomial

PGrad
k (H) = (I− γH)k. (2.3)

Suppose we set the step size γ to ensure

‖I− γH‖2 < 1,

where ‖ · ‖2 stands for the operator `2 norm. Then, (2.2) controls the convergence with

‖xk − x?‖2 ≤ ‖I− γH‖k2 ‖x0 − x?‖2, for k ≥ 0. (2.4)

Because the matrix H is symmetric and hence diagonalizable in an orthogonal basis,
given γ > 0, we obtain

‖I− γH‖2 ≤ max
µI�H�LI

‖I− γH‖2

≤ max
µ≤λ≤L

|1− γλ|

≤ max
µ≤λ≤L

max {γλ− 1 ; 1− γλ}

≤ max {γL− 1 ; 1− γµ} .

To get the best possible worst-case convergence rate, we now minimize this quantity in γ
by solving

min
γ

max {γL− 1, 1− γµ} = L− µ
L+ µ

. (2.5)

2.2. Optimal Methods and Minimax Polynomials 7

0 L

0.2

0.4

0.6

0.8

1

Figure 2.1: We plot |PGrad
k (λ)| (for the optimal γ in (2.6)) for k ∈ {1, 3, 5}, µ = 1, L = 10. Note that

the polynomials satisfy PGrad
k (0) = 1. The rate is equal to the largest value of |PGrad

k (λ)| on the interval,
which is achieved at the boundaries (where λ is either equal to µ or to L).

The optimal step size is obtained when both terms in the max are equal, reaching:

γ = 2
L+ µ

. (2.6)

Denoting by κ , L
µ ≥ 1 the condition number of the function f , the bound in (2.4) finally

becomes
‖xk − x?‖2 ≤

(
κ− 1
κ+ 1

)k
‖x0 − x?‖2, for k ≥ 0, (2.7)

which is a worst-case guarantee for the gradient method when minimizing smooth strongly
convex quadratic functions.

2.2 Optimal Methods and Minimax Polynomials

In Equation (2.4) above, we saw that the worst-case convergence rate of the gradient
method on quadratic functions can be controlled by the spectral norm of a matrix
polynomial. Figure 2.1 plots the polynomial PGrad

k for several degrees k. We can extend
this reasoning further to produce methods with accelerated worst-case convergence
guarantees.

2.2.1 First-Order Methods and Matrix Polynomials

The bounds derived above for gradient descent can be extended to a broader class of
first-order methods for quadratic optimization. We consider first-order algorithms in
which each iterate belongs to the span of previous gradients, i.e.

xk+1 ∈ x0 + span {∇f(x0), ∇f(x1), . . . , ∇f(xk)} , (2.8)

and show that the iterates can be written using matrix polynomials as in (2.3) above.

8 Chebyshev Acceleration

Proposition 2.1. Let x0 ∈ Rd and f be a quadratic function defined as in (2.1) with
µI � H � LI for some L > µ > 0. The sequence {xk}k=0,1,... satisfies

xk+1 ∈ x0 + span {∇f(x0), ∇f(x1), . . . , ∇f(xk)} , (2.9)

for all k = 0, 1, . . ., if and only if the errors {xk − x?}k=0,1,... can be written as

xk − x? = Pk(H)(x0 − x?), (2.10)

for all k = 0, 1 . . ., for some sequence of polynomials {Pk}k=0,1,... with Pk of degree at
most k and Pk(0) = 1.

Proof. Since ∇f(x) is the gradient of a quadratic function, it reads

∇f(x) = Hx− b = H(x− x?)

for any x? satisfying Hx? = b, where H is symmetric. We have

x0 − x? = 1 · (x0 − x?)
= P0(H)(x0 − x?).

We now show recursively that xk−x? = Pk(H)(x0−x?), where Pk is a residual polynomial
of degree at most k. Our assumption about the iterates (2.9) implies that, for some
sequence of coefficients {α(k+1)

i }i=0,...,k,

xk+1 − x? = x0 − x? +
k∑
i=0

α
(k+1)
i ∇f(xi).

Assuming recursively that (2.10) holds for all indices i ≤ k,

xk+1 − x? = x0 − x? +
k∑
i=0

α
(k+1)
i HPi(H)(x0 − x?)

=
(

I + H
k∑
i=0

α
(k+1)
i Pi(H)

)
(x0 − x?).

Then, by writing Pk+1(x) = 1 + x
∑k
i=0 α

(k+1)
i Pi(x), we have

xk+1 − x? = Pk+1(H)(x0 − x?)

with Pk+1(0) = 1 and deg(Pk+1) ≤ k + 1. Since the proof is a sequence of equalities, the
equivalence readily follows.

Given a classM of problem matrices H, Proposition 2.1 provides a way to design
algorithms. Indeed, we can extract a first-order method from a sequence of polynomials
{Pk}k=0,...,N . We can therefore use tools from approximation theory to find optimal
polynomials and extract corresponding methods from them. Given a matrix class M,
this involves minimizing the worst-case convergence bound over H ∈M by solving

P ∗k = argmin
P∈Pk,
P (0)=1

max
H∈M

‖P (H)‖2 (2.11)

2.3. The Chebyshev Method 9

where Pk is the set of polynomials of degree at most k. The polynomial P ∗k is an optimal
polynomial forM and yields a (worst-case) optimal algorithm for the classM. In terms
of the notation used in the proof of Proposition 2.1, we are by construction looking for
coefficients {α(j)

i }i depending only on the problem classM, but not on a specific instance
of H.

2.3 The Chebyshev Method

In the case whereM is the set of positive definite matrices with a bounded spectrum,
namely

M = {H ∈ Sd : 0 ≺ µI � H � LI},

the optimal polynomial can be found by solving

P ∗k = argmin
P∈Pk,
P (0)=1

max
λ∈[µ,L]

|P (λ)| (2.12)

Polynomials that solve (2.12) are derived from Chebyshev polynomials of the first kind in
approximation theory and can be formed explicitly to produce an optimal algorithm called
the Chebyshev method. This section describes this method and provides its corresponding
worst-case convergence guarantees.

2.3.1 Shifted Chebyshev Polynomials

We now explicitly introduce the Chebyshev polynomials. A more complete treatment
of these polynomials is available in, e.g., Mason and Handscomb (2002). Chebyshev
polynomials of the first kind are defined recursively as follows

T0(x) = 1,
T1(x) = x,

Tk(x) = 2xTk−1(x)− Tk−2(x), for k ≥ 2.
(2.13)

There exists a compact explicit solution for Chebyshev polynomials that involves
trigonometric functions:

Tk(x) =


cos(k acos(x)) x ∈ [−1, 1],
cosh(k acosh(x)) x > 1,
(−1)kcosh(k acosh(−x)) x < 1.

(2.14)

It is possible to show that Chebyshev polynomials satisfy the minimax property
1

2k−1Tk = argmin
deg(P)≤k
P is monic

max
[−1,1]

|P (x)|,

where a monic polynomial is a polynomial whose coefficient associated with the highest
power is equal to one. From this minimax definition, that defines the minimal polynomial

10 Chebyshev Acceleration

0 L

0.2

0.4

0.6

0.8

1

Figure 2.2: We plot the absolute value of C [µ,L]
1 (x), C [µ,L]

3 (x) and C [µ,L]
5 (x) for λ ∈ [µ,L], where µ = 1

and L = 10. Note that the polynomials satisfy C [µ,L]
k (0) = 1. The maximum value of the image of [µ,L]

by C [µ,L]
k decreases rapidly as k grows, implying an accelerated rate of convergence.

over [−1, 1], we can transform it by shifting it to the interval [µ,L], then rescaling it to
obtain a polynomial such that P (0) = 1. More precisely, using a simple linear mapping
from [µ, L] to [−1, 1],

x→ t[µ,L](x) = 2x− (L+ µ)
L− µ

,

we obtain shifted Chebyshev polynomials:

C
[µ,L]
k (x) =

Tk
(
t[µ,L](x)

)
Tk
(
t[µ,L](0)

) . (2.15)

where we have enforced the normalization constraint C [µ,L]
k (0) = 1. Under these transfor-

mations, the shifted Chebyshev polynomials keep some minimax property, and can be
shown to be solutions to (2.12).

More formally, Golub and Varga (1961a) characterize the `∞ optimality on the interval
[µ,L] using an equi-oscillation argument (see, e.g., (Süli and Mayers, 2003)); i.e., they
show that the solution of (2.12) is P ∗k = C

[µ,L]
k . The equioscillation property of the shifted

Chebyshev polynomial is clearly visible on Figure 2.2, where the polynomial hits its
maximum value k + 1 times on the interval [µ,L].

2.3. The Chebyshev Method 11

2.3.2 Chebyshev Algorithm

The following recursion follows from (2.13) together with (2.15) and a few simplifications:

C
[µ,L]
0 (x) = 1,

C
[µ,L]
1 (x) = 1− 2

L+ µ
x, (2.16)

C
[µ,L]
k (x) = 2δk

L− µ
(L+ µ− 2x)C [µ,L]

k−1 (x)

+
(

1− 2δk(L+ µ)
L− µ

)
C

[µ,L]
k−2 (x), for k ≥ 2,

where δ1 = L−µ
L+µ and

δk = −
Tk−1

(
t[µ,L](0))

Tk
(
t[µ,L](0))

= 1
2L+µ
L−µ − δk−1

, for k ≥ 2.

The sequence δk ensures C [µ,L]
k (0) = 1. We present this recursion for simplicity, but

one should note that it might present some numerical stability issues in practice. There
exist numerically more stable first-order methods based on Chebyshev polynomials, see,
e.g., (Gutknecht and Röllin, 2002, Algorithm 1). We plot C [µ,L]

1 (x), C [µ,L]
3 (x) and C [µ,L]

5 (x)
in Figure 2.2 for illustration.

Computational details for the shifted Chebyshev. Let us quickly detail how to arrive
to (2.16) using (2.13) and (2.15). We first expand Tk

(
t[µ,L](x)

)
using (2.13),

Tk
(
t[µ,L](x)

)
= 2t[µ,L](x)Tk−1

(
t[µ,L](x)

)
− Tk−2

(
t[µ,L](x)

)
,

= 2(2x− L− µ)
L− µ

Tk−1
(
t[µ,L](x)

)
− Tk−2

(
t[µ,L](x)

)
.

Since C [µ,L]
k (x) = Tk

(
t[µ,L](x)

)
Tk
(
t[µ,L](0)

) , we substitute Tk
(
t[µ,L](x)

)
by Tk

(
t[µ,L](0)) ·C [µ,L]

k (x) in the

equation above and obtain

Tk
(
t[µ,L](0)) · C [µ,L]

k (x) =2(2x− L− µ)
L− µ

Tk−1
(
t[µ,L](0)) · C [µ,L]

k−1 (x)

− Tk−2
(
t[µ,L](0)) · C [µ,L]

k−2 (x),

C
[µ,L]
k (x) =2(2x− L− µ)

L− µ
Tk−1

(
t[µ,L](0))

Tk
(
t[µ,L](0))

· C [µ,L]
k−1 (x)

−
Tk−2

(
t[µ,L](0))

Tk
(
t[µ,L](0))

· C [µ,L]
k−2 (x),

C
[µ,L]
k (x) =− 2(2x− L− µ)

L− µ
δkC

[µ,L]
k−1 (x)

− δk−1δkC
[µ,L]
k−2 (x).

12 Chebyshev Acceleration

For obtaining a simple recursion on δk, note that C [µ,L]
k (0) = 1 for all k ≥ 0 by construction.

It follows that

C
[µ,L]
k (0) = 2(L+ µ)

L− µ
δk C

[µ,L]
k−1 (0)︸ ︷︷ ︸

=1

−δk−1δk C
[µ,L]
k−2 (0)︸ ︷︷ ︸

=1

= 1,

and thereby
δk−1δk = 1− 2δk

L+ µ

L− µ
and δk = 1

2L+µ
L−µ − δk−1

.

2.3.3 Chebyshev and Polyak’s Heavy-Ball Methods

We now present the resulting algorithm, called Chebyshev semi-iterative method (Golub
and Varga, 1961b). We define iterates using C [µ,L]

k (x) as follows,

xk − x? = C
[µ,L]
k (H)(x0 − x?).

The recursion in (2.16) then yields

xk − x? = 2δk
L− µ

((L+ µ)I− 2H) (xk−1 − x?)

+
(

1− 2δk
L+ µ

L− µ

)
(xk−2 − x?).

Since the gradient of the function reads

∇f(xk) = H(xk − x?),

we can simplify away x? to get the following recursion:

xk = 2δk
L− µ

((L+ µ)xk−1 − 2∇f(xk−1)) +
(

1− 2δk
L+ µ

L− µ

)
xk−2,

which describes iterates of the Chebyshev method. We summarize it as Algorithm 2.
By construction, the Chebyshev method is a worst-case optimal first-order method for
minimizing quadratics whose spectrum lies in [µ,L]. Surprisingly, its iteration structure
is simple and somewhat intuitive: it involves a gradient step with variable step size
4δk/(L− µ), combined with a variable momentum term.

Perhaps more surprisingly, the Chebyshev method has a stationary regime that is
even simpler. Indeed, when k →∞, the coefficients of the recursion from Algorithm 2
converge to the ones of Polyak’s heavy-ball method,

xk = xk−1 −
4

(
√
L+√µ)2

∇f(xk−1) +
(
√
L−√µ)2

(
√
L+√µ)2

(xk−1 − xk−2).

To see this, it suffices to compute the limit of δk, written as δ∞, by solving

δ∞ = 1
2L+µ
L−µ − δ∞

,

2.3. The Chebyshev Method 13

Algorithm 2 Chebyshev’s method
Input: An L-smooth µ-strongly convex quadratic f , initial point x0 and budget N .
1: Set δ1 = L−µ

L+µ , x1 = x0 − 2
L+µ∇f(x0).

2: for k = 2, . . . , N do
3: Set δk = 1

2L+µ
L−µ−δk−1

,

4: xk = xk−1 − 4δk
L−µ∇f(xk−1) +

(
1− 2δk L+µ

L−µ

)
(xk−2 − xk−1).

5: end for
Output: Approximate solution xN .

reaching

δ∞ =
√
L−√µ√
L+√µ

. (2.17)

We obtain Polyak’s heavy-ball method by replacing δk with δ∞ in Algorithm 2.

2.3.4 Worst-case Convergence Bounds

The shifted Chebyshev polynomials are solutions to (2.12). Therefore, using the same trick
as for gradient descent, we can obtain the following worst-case bound for the Chebyshev
method

‖xk − x?‖2 ≤ ‖C
[µ,L]
k (H)(x0 − x?)‖2 ≤ ‖x0 − x?‖2 max

x∈[µ,L]
|C [µ,L]
k (x)|. (2.18)

The maximum value is determined by evaluating the polynomial at one of the extremities
of the interval (Mason and Handscomb, 2002, Chapter 2) (see also Figure 2.2), i.e,

max
x∈[µ,L]

|C [µ,L]
k (x)| = C

[µ,L]
k (L).

Using (2.15) and (2.14) successively,

|C [µ,L]
k (L)| = 1

|Tk
(
t[µ,L](0)

)
|

= 1
cosh

(
k acosh

(
L+µ
L−µ

)) .
We obtain the worst-case convergence guarantee of the Chebyshev method, as stated in
the following theorem.

Theorem 2.1. Let x0 ∈ Rd and f be a quadratic function defined as in (2.1) with
µI � H � LI for some L > µ > 0. For any N ∈ N, the iterates of the Chebyshev method
(Algorithm 2) satisfy

‖xN − x?‖2 ≤
2

ξN + ξ−N
‖x0 − x?‖2 where ξ =

√
L
µ + 1√
L
µ − 1

. (2.19)

14 Chebyshev Acceleration

Proof. We bound (2.18) as follows,

‖xN − x?‖2 ≤ ‖x0 − x?‖2 max
x∈[µ,L]

|C [µ,L]
N (x)|

= ‖x0 − x?‖2
1

cosh
(
N acosh

(
L+µ
L−µ

)) .
First, we evaluate the acosh term,

acosh
(
L+ µ

L− µ

)
= ln

L+ µ

L− µ
+
√(

L+ µ

L− µ

)2
− 1

 ,
= ln (ξ) , where ξ =

√
L
µ + 1√
L
µ − 1

.

After plugging this result into the cosh, we get
1

cosh (N ln (ξ)) = 2
eN ln(ξ) + e−N ln(ξ) = 2

ξN + ξ−N
,

thereby reaching the desired result.

It may be difficult to compare the convergence rate of the Chebyshev method with
that of gradient descent, due to its more complex expression. However, by neglecting the
denominator term ξ−N , we obtain the following upper bound:

‖xN − x?‖2 ≤ 2
(√

κ− 1√
κ+ 1

)N
‖x0 − x?‖2.

Note that the convergence rate of Polyak’s heavy-ball method matches (up to a
multiplicative factor) that of Chebyshev’s method asymptotically, which is better than
that of gradient descent in (2.7), which reads

‖xN − x?‖2 ≤
(
κ− 1
κ+ 1

)N
‖x0 − x?‖2.

We summarize this result in the following corollary, which compares the number of
iterations required to reach a target accuracy ε.

Corollary 2.2. Let x0 ∈ Rd and f be a quadratic function defined as in (2.1) with
µI � H � LI for some L > µ > 0. After respectively

• N ≥ L
2µ log

(
‖x0−x?‖2

ε

)
iterations of gradient descent (Algorithm 1 with (2.6)), or

• N ≥
√

L
2µ log

(
‖x0−x?‖2

ε

)
iterations of Chebyshev’s method (Algorithm 2),

we have that
‖xN − x?‖2 ≤ ε.

2.3. The Chebyshev Method 15

Proof. For gradient descent, a sufficient condition on the number of iterations required
to reach an accuracy of ε reads

‖xN − x?‖2 ≤
(
κ− 1
κ+ 1

)N
‖x0 − x?‖2 ≤ ε.

Taking the log on both sides, we get

N ≥
log

(
‖x0−x?‖2

ε

)
log

(
κ+1
κ−1

) .

Using the bound log
(

1
x

+1
1
x
−1

)
> 2x, the above condition can be simplified to the following

stronger condition on N

N ≥ κ

2 log
(‖x0 − x?‖2

ε

)
.

This gives the desired result for gradient descent. With the same approach, we also get
the result for the Chebyshev algorithm.

This corollary shows that the Chebyshev method can be
√
κ faster than gradient

descent. This translate to a speedup factor of 100 in problems with a (reasonable)
condition number of 104, which is very significant.

Worst-case optimality of Chebyshev’s method. When the dimension d of the ambient
space is sufficiently large, and without further assumptions on the spectrum of H, the
worst-case guarantee on Chebyshev’s method is essentially unimprovable. Informally,
given a budget N , a problem classM and some R > 0, the best worst-case guarantee on
the distance to optimality ‖xN − x?‖2 that can be achieved by a first-order method is
given by

max
H∈M, x?,x0∈Rd
‖x0−x?‖2≤R

min
P∈PN ,
P (0)=1

‖P (H)(x0 − x?)‖2, (2.20)

which corresponds to the worst-case performance of the best performing method on
any problem of the class. More precisely, for any first-order method satisfying xk ∈
x0+span {∇f(x0), ∇f(x1), . . . , ∇f(xk−1)} for all k ≥ 1 (the “span assumption”) applied
on the quadratic problem (2.1), it holds that:

span {∇f(x0), . . . , ∇f(xk−1)}

⊆ span
{
H(x0 − x?), . . . , Hk(x0 − x?)

}
,

and therefore, the conjugate gradient-like method

xk = argmin
x
‖x− x?‖2

s.t. x ∈ x0 + span{H(x0 − x?), . . . , Hk(x0 − x?)},
(2.21)

16 Chebyshev Acceleration

is instance-optimal: it achieves the best worst-case performance on any problem instance.
It follows that the worst-case performance of any first-order method satisfying the span
assumption can only be worse than that of (2.21). The worst-case performance of (2.21)
being given by (2.20), we have that for any initialization x0 ∈ Rd any first-order method
satisfying the span assumption in Equation (2.8), there exists at least one problem on
which

‖xN − x?‖2 ≥ max
H∈M, x?∈Rd
‖x0−x?‖2≤R

min
P∈PN ,
P (0)=1

‖P (H)(x0 − x?)‖2, (2.22)

where xN ∈ Rd is the output of the first-order method under consideration, and x? is the
optimal point of the problem.

In other words, the max term in (2.22) searches for the “most difficult” quadratic
function, while the min term represents the best first-order method for a specific quadratic
function. Of course, the method (2.21) is much more powerful than the Chebyshev method,
since it is optimal for any specific function. However, it is possible to show that despite
being more powerful, this optimal algorithm has the same worst-case performance as
that of Chebyshev’s method when the dimension d of the ambient space is large enough.
The lower bound result is summarized by the next theorem.

Theorem 2.3. (Nemirovsky, 1994, Proposition 12.3.2) Let N, d ∈ N such that d ≥ N + 1,
and let x0 ∈ Rd. There exists H ∈ Sd : µI � H � LI and x? ∈ Rd such that any sequence
{xk}k=0,...,N generated by any first-order method satisfying (2.8), and initiated at x0 for
minimizing the quadratic function f in the form (2.1) satisfies

‖xN − x?‖2 ≥ ‖x0 − x?‖2 min
P∈PN ,
P (0)=1

max
λ∈[µ,L]

|P (λ)| = 2
ξN + ξ−N

‖x0 − x?‖2,

with ξ =

√
L
µ

+1√
L
µ
−1

.

More details on this topic can be found in (Nemirovsky, 1994, Section 12.3).

2.4 Notes and References

The Chebyshev method presented in this section is worst-case optimal for the class of
quadratic functions with Hessians H satisfying µI � H � LI. More detailed discussions
and developments on the topic of Chebyshev polynomials, for quadratic minimization,
are provided in (Nemirovsky and Yudin, 1983a; Nemirovsky, 1992; Nesterov, 2003), as
well as in the lecture notes (Nemirovsky, 1994, Chapter 10). Those references include
the treatment of the case where the smallest eigenvalue is µ = 0. Finally, one should
note that the optimal convergence bounds achieved by the Chebyshev method requires
knowledge of the problem class parameters, µ and L, which might or might not be an
issue, depending on the problem at hand.

2.4. Notes and References 17

Probably the most celebrated method for unconstrained quadratic optimization
problems is the conjugate gradient (CG) method. Its origin is usually attributed to
Stiefel (1952) and Straeter (1971). As for the setup of this section, it turns out that CG
methods are instance-optimal, in the sense that they are the best performing first-order
methods on every particular problem instance in the range of unconstrained quadratic
minimization problems (in particular, the CG variant presented in (2.21) achieves the
lower bound from Theorem 2.3). The classical CG produces iterates {xk}k≥0 such that

xk+1 ∈ argmin
x

f(x)

s.t. x ∈ x0 + span{H(x0 − x?), . . . , Hk(x0 − x?)},

which admits efficient formulation; see, e.g., (Nocedal and Wright, 2006). Another variant
of CG is often referred to as MINRES, which produces iterates {xk}k≥0 in the form

xk+1 ∈ argmin
x
‖∇f(x)‖2

s.t. x ∈ x0 + span{H(x0 − x?), . . . , Hk(x0 − x?)}.

Its generalization GMRES (Saad and Schultz, 1986) is popular for solving linear systems
of the form Hx = b when H is not required to be either symmetric or invertible.

Yet another alternative for dealing with quadratic minimization is to resort on
Anderson-type acceleration schemes. As for conjugate gradient methods, those schemes
do not readily extend beyond quadratic minimization with the same nice theoretical
guarantees. This is the topic of the next section.

Beyond quadratic optimization, properties of Chebyshev polynomials is the focus
of (Mason and Handscomb, 2002). The use of Chebyshev polynomials in the context of
solving linear systems is covered at length in (Fischer, 1996). In particular, the theory
of (Fischer, 1996) can be instantiated for the convex quadratic minimization in average-
case analyses, where Chebyshev polynomials (along with their heavy-ball limits) also
naturally appear (Pedregosa and Scieur, 2020; Lacotte and Pilanci, 2020; Scieur and
Pedregosa, 2020).

3
Nonlinear Acceleration

In this section, we see that the main argument used in the Chebyshev method can be
adapted beyond quadratic problems. The extension that we present here, called nonlinear
acceleration, follows a pattern that is known in numerical analysis as vector extrapolation
methods: it seeks to accelerate the convergence of sequences by extrapolation using
nonlinear averages. Different such strategies are known under various names, starting
with Aitken’s ∆2 (Aitken, 1927), Wynn’s epsilon algorithm (Wynn, 1956), and Anderson
acceleration (Anderson, 1965); a survey of these techniques can be found in (Sidi et
al., 1986). The vector extrapolation techniques, generic by nature, can be applied to
optimization, as explained in what follows.

3.1 Introduction

This section focuses on the convex minimization problem:

minimize f(x) (3.1)

in the variable x ∈ Rd. We assume f to be twice continuously differentiable in a
neighborhood of its minimizer x?, and denote by f? = f(x?) the minimum of f .

We aim at adapting some of the ideas behind Chebyshev’s acceleration (see Section 2)
to a broader class of convex minimization problems beyond quadratic minimization.
These adaptations stems from a local quadratic approximation of the objective:

f(x) = f? + 1
2 〈x− x?; H(x− x?)〉+ o(‖x− x?‖22), (3.2)

where H = ∇2f(x?) ∈ Sd (the set of symmetric d× d matrices) is the Hessian of f at x?,
which we assume to satisfy µI � H � LI for some 0 < µ < L. Of course, neglecting the
second-order term in (3.2) allows recovering a quadratic minimization problem for which
one could apply Chebyshev’s method as is.

18

3.1. Introduction 19

We recall that the Chebyshev method is the first-order method associated with the
best worst-case polynomial. In short, the kth iteration of Chebyshev’s method consists
in combining previous gradients for minimizing a worst-case convergence bound over
all µ-strongly convex L-smooth quadratic problems in Rd (in the form (2.1) and with
d ≥ k + 1):

αk = argmin
{α(i)}i

max
µI�H�LI

x0,...,xk, x?, b∈Rk+1

‖xk − x?‖22
‖x0 − x?‖22

s.t. xk = x0 −
k−1∑
i=0

α(i)∇f(xi),

Hx? = b,

xk = x0 −
k−1∑
i=0

α
(i)
k ∇f(xi),

(3.3)

so that αk does not depend on the particular problem instance (H, x?) and on the
initialization x0, but only on the problem class described by µ and L (we note that in
Section 2, (3.3) was expressed in terms of optimizing a polynomial (2.12)). A natural
alternative to Chebyshev’s method consists in choosing those weights adaptively. That
is, depending on the particular instance of the problem at hand. For doing so, we have
to choose another way to measure performance (because minimizing ‖xk − x?‖2 would
require knowledge of x?); one such possibility is to rely on function values or gradient
norms. One could then rely on conjugate gradient-type methods which are very attractive
for unconstrained quadratic minimization (see, e.g., discussions in Section 2.4). In this
section, we consider the case where a first-order optimization method provided us with a
sequence of pairs {(xi,∇f(xi)}i=0,...,k satisfying (for i = 1, . . . , k)

xi ∈ x0 + span {∇f(x0), ∇f(x1), . . . , ∇f(xi−1)} , (3.4)

and we study methods producing approximations of x? as linear combinations ∑k
i=0 cixi

of the previous iterates {xi}i=0,...,k. For choosing the corresponding weights, we minimize
the norm of the gradient at the approximated point. In unconstrained convex quadratic
minimization problems, this approach is closely related to the so-called MINRES (Paige
and Saunders, 1975) and GMRES (Saad and Schultz, 1986) methods (conjugate gradient-
type methods minimizing gradient norms; see discussions by Walker and Ni (2011) and
Section 2.4). That is, when f is quadratic, we choose the weights {ci}i=0,...,k by solving

c? = argmin
c

{∥∥∥∇f (∑k
i=0 cixi

)∥∥∥2

2
: 1T c = 1

}
. (3.5)

Whereas the new approximation is a linear combination of previous iterates {xi}i=0,...,k,
the coefficients {ci}i=0,...,k depend nonlinearly on both ∇f and on {xi}i=0,...,k. This
technique is known under a few different names including those of Anderson acceleration
and minimal polynomial extrapolation (see discussions and references in Section 3.6 for

20 Nonlinear Acceleration

more details). In this section, we refer to all these methods as “nonlinear acceleration”
techniques.

3.2 Nonlinear Acceleration for Quadratic Minimization

In this section, we present the simplest form of nonlinear acceleration, which is often
referred to as the offline nonlinear acceleration mechanism. We start with the main
arguments underlying the technique, and present a few variants later in this section.

The core idea of the mechanism is to use a sequence of iterates {xi}i=0,...,k provided by
a first-order method for solving (3.1). On this basis, we generate a new approximation of
a solution to (3.1) as a linear combination of past iterates, in the form xextr = ∑k

i=0 cixi.
The point xextr is commonly referred to as the extrapolation and can be chosen in
different ways. In classical nonlinear acceleration mechanisms, it is chosen for making
‖∇f(xextr)‖2 small, as in (3.5). In general, solving (3.5) is just as costly as solving (3.1),
but the mechanism turns out to have an efficient formulation when minimizing quadratic
functions of the form

f(x) = 1
2〈x− x?; H(x− x?)〉+ f?. (3.6)

In this case, it is possible to find an explicit formula for (3.5). Indeed, the gradient of f is
then a linear function, and because the coefficients {ci}i=0,...,k sum to one, the gradient
of the linear combination is equal to a linear combination of gradients:

∇f
(

k∑
i=0

cixi

)
= H

(
k∑
i=0

cixi − x?

)
=

k∑
i=0

ciH (xi − x?) =
k∑
i=0

ci∇f(xi). (3.7)

It follows that (3.5) reduces to a simple quadratic program involving gradients of the
past iterates. It can be formulated as

c? = argmin
c

{∥∥∥∑k
i=0 ci∇f (xi)

∥∥∥2

2
: cT1 = 1

}
. (3.8)

For convenience, we use the following more compact form in the sequel

c? = argmin
cT 1=1

‖Gc‖22, (3.9)

where G = [∇f(x0), . . . ,∇f(xk)] is the matrix formed by concatenating past gradients.
This quadratic subproblem requires solving a small linear system of (k + 1) equations.
When GTG is invertible, an explicit solution is provided by

c? = z∑k
i=0 zi

, where z = (GTG)−11.

This mechanism is summarized in Algorithm 3.

3.2.1 Worst-case Convergence Bounds

In this section, we quantify the accuracy of nonlinear acceleration. In particular, we
show that it is instance-optimal and achieves the same worst-case convergence rate as

3.2. Nonlinear Acceleration for Quadratic Minimization 21

Algorithm 3 Nonlinear acceleration (offline version)
Input: Sequence of pairs {(xi, ∇f(xi))}i=0,...,k.
1: Form the matrix G = [∇f(x0), . . . , ∇f(xk)], and compute GTG.
2: Solve the linear system (GTG)z = 1, and set c = z

zT 1 .
3: Form the extrapolated point xextr = ∑k

i=0 cixi.
Output: Approximate solution xextr.

that Chebyshev’s method (see Theorem 2.1 and Theorem 2.3) in the worst-case, as
soon as the sequence {xi}i=0,...,k is generated by a reasonable first-order method. Before
going into the analysis, we introduce a few technical ingredients specifying what is a
reasonable first-order method. In short, we require that {xi}i=0,...,k is obtained from a
“nondegenerate” first-order method. That is, we assume that the method uses ∇f(xi)
non-trivially for generating xi+1 (for all i = 0, . . . , k − 1).

Definition 3.1 (Nondegenerate first-order method). Let x0 ∈ Rd be an initial point, and
f : Rd → R be a continuously differentiable convex function. A first-order method
generates sequences of iterates {xi}i=0,1,... such that for all i = 1, 2, . . .

xi ∈ x0 + span{∇f(x0), . . . ,∇f(xi−1)}.

A first-order method is nondegenerate if for all continuously differentiable convex function
f : Rd → R, all i = 0, 1, . . ., and all x0 ∈ Rd there exists some {α(i)

j }j=0,...,i ⊂ R with
α

(i)
i 6= 0 such that

xi+1 = x0 +
i∑

j=0
α

(i)
j ∇f(xj). (3.10)

The proposition below shows that when the sequence {xi}i=0,1,... is generated by a
nondegenerate first-order method, the gradient of any iterate xi can be written using a
polynomial of degree exactly i.

Proposition 3.1. Let x0 ∈ Rd be an initial point, f : Rd → R be a quadratic function in
the form (3.6) with µI � H � LI, and let {xi}i=0,1,... be generated by a nondegenerate
first-order method. Then, for all i = 0, 1, . . ., there exists a polynomial Pi of degree exactly
i such that Pi(0) = 1 and

∇f(xi) = Pi(H)∇f(x0).

Proof. We proceed by induction. First, we have P0 = 1 (P0 has degree 0 and P0(0) = 1)
and hence

∇f(x0) = P0(H)∇f(x0),

thereby trivially reaching the desired conclusion for i = 0.
We proceed with the induction hypothesis, assuming that the desired result holds

for xi. By Definition 3.1 (nondegenerate first-order method), and because f is a quadratic

22 Nonlinear Acceleration

function (3.6), we have

∇f(xi+1) =∇f

x0 +
i∑

j=0
α

(i)
j ∇f(xj)


=H

x0 − x? +
i∑

j=0
α

(i)
j ∇f(xj)


=H(x0 − x?) +

i∑
j=0

α
(i)
j H∇f(xj)

=∇f(x0) +
i∑

j=0
α

(i)
j H∇f(xj).

Thanks to the induction hypothesis, we have ∇f(xj) = Pj(H)∇f(x0) with Pj(0) = 1
and deg(Pj) = j for j ≤ i. For showing that Pi+1 satisfies the desired claim, we start by
expressing ∇f(xi+1) in terms of a polynomial:

∇f(xi+1) =

P0(H) +
i∑

j=0
α

(i)
j HPj(H)


︸ ︷︷ ︸

=Pi+1(H)

∇f(x0).

It is relatively straightforward to verify Pi+1(0) = 1 using the previous expression:

Pi+1(0) = P0(0) +
i∑

j=0
α

(i)
j · 0 · Pj(0) = P0(0) = 1.

Finally, a minor reorganization of the expression of Pi+1 allows writing

Pi+1(H) = P0(H) +
i−1∑
j=0

α
(i)
j HPj(H)

︸ ︷︷ ︸
degree≤i

+α(i)
i HPi(H).

Nondegeneracy of the first-order method implies that there exists some α(i)
i 6= 0 such that

the previous expression holds. Finally it follows from deg(Pi) = i (induction hypothesis)
that deg(HPi(H)) = i+ 1, thereby reaching the desired claim.

Equipped with previous technical ingredients, one can show that Algorithm 3 is
“instance-optimal” when applied to a nondegenerate first-order method. This means that
the nonlinear acceleration algorithm finds the best polynomial given a specific quadratic
function f—in opposition to the Chebyshev method that finds the best polynomial for a
class of functions (Theorem 2.1). In other words, nonlinear acceleration adaptively looks
for the best combination of previous iterates given the information stored in the previous
gradients, while Chebyshev’s method uses the same worst-case optimal polynomial in all
cases. Moreover, Algorithm 3 does not require knowledge of the smoothness or strong
convexity parameters.

3.2. Nonlinear Acceleration for Quadratic Minimization 23

Theorem 3.1 (Instance-optimality of nonlinear acceleration). Let x0 ∈ Rd be an initial
point, f be the quadratic function from (3.6) with µI � H � LI, and {xi}i=0,...,k be
generated by a nondegenerate first-order method initiated from x0. For any k ≥ 0, it
holds that

‖∇f(xextr)‖2 = min
cT 1=1

∥∥∥∇f (∑k
i=0cixi

)∥∥∥
2

= min
P∈Pk,
P (0)=1

‖P (H)∇f(x0)‖2, (3.11)

where xextr is obtained from Algorithm 3 {(xi,∇f(xi))}i=0,...,k, and Pk is the set of
polynomials of degree at most k.

Proof. Since the coefficients ci sum to one, we have the following equalities:

∇f(xextr) = ∇f
(

k∑
i=0

cixi

)
= H

(
k∑
i=0

ci(xi − x?)
)

=
(

k∑
i=0

ciH(xi − x?)
)

=
k∑
i=0

ci∇f(xi).

Therefore,

‖∇f(xextr)‖2 =
∥∥∥∥∥
k∑
i=0

ci∇f(xi)
∥∥∥∥∥

2
.

We now use the definition of a first-order method, which yields iterates xi such that

xi ∈ x0 + span{∇f(x0), . . . , ∇f(xi−1)}.

From Section 2.3, Proposition 2.1, it follows that xi can be written as

xi = x? + Pi(H)(x0 − x?), Pi ∈ Pi, Pi(0) = 1.

It also holds that its gradient can be written using the same polynomial:

∇f(xi) = H(xi − x?) = HPi(H)(x0 − x?) = Pi(H)(H(x0 − x?))
= Pi(H)∇f(x0). (3.12)

By substituting this expression in the objective of (3.8), we obtain

min
cT 1=1

∥∥∥∥∥
k∑
i=0

ci∇f(xi)
∥∥∥∥∥

2

2
= min

cT 1=1

∥∥∥∥∥
(

k∑
i=0

ciPi(H)
)
∇f(x0)

∥∥∥∥∥
2

2
. (3.13)

Since the iterates {xi}i=0,...,k are generated by a nondegenerate first-order method, all
polynomials Pi have differents degrees. Therefore, the polynomials {Pi}i=0,...,k are linearly
independent, and hence {Pi}i=0,...,k is a basis for the space Pk. Finally, because Pi(0) = 1
and cT1 = 1, we can rephrase the objective (3.13) as

min
cT 1=1

∥∥∥∥∥
(

k∑
i=0

ciPi(H)
)
∇f(x0)

∥∥∥∥∥
2

= min
P∈Pk,
P (0)=1

‖P (H)∇f(x0)‖2 .

24 Nonlinear Acceleration

The convergence rate is thus given by

‖∇f(xextr)‖2 =
∥∥∥∥∥
k∑
i=0

ci∇f(xi)
∥∥∥∥∥

2
= min

P∈Pk,
P (0)=1

‖P (H)∇f(x0)‖2 .

This theorem shows that the worst-case convergence rate is essentially controlled by
the optimal value of a minimization problem. The minimum in (3.11) can be bounded
using a Chebyshev argument similar to the main argument used in Section 2.

Corollary 3.2. Let x0 ∈ Rd be an initial point, f be the quadratic function from (3.6)
with µI � H � LI, and {xi}i=0,...,k be generated by a nondegenerate first-order method
initiated from x0. Then, for any k ≥ 0, it holds that

‖∇f(xextr)‖2 ≤
2

ξk + ξ−k
‖∇f(x0)‖2, ξ =

√
L
µ + 1√
L
µ − 1

.

where xextr is the output of Algorithm 3 applied to {(xi, ∇f(xi))}i=0,...,k.

Proof. We use the shifted Chebyshev polynomial from Theorem 2.1 as a feasible solution
of the minimization problem (3.11).

As for the Chebyshev method, it is possible to show that the convergence rate
cannot be improved as it matches that of the corresponding lower bound, which can
be obtained by adapting Theorem 2.3 to gradient norms; see e.g., (Nemirovsky, 1994,
Proposition 12.3.2).

Remark 3.1 (Finite-time convergence). When {(xi, ∇f(xi))}i=0,...,k is generated by a
nondegenerate first-order method and when k is large enough, nonlinear acceleration
eventually converges exactly to the minimizer of the quadratic function f (this follows
easily from analogies with conjugate gradient-type methods; see, e.g.,Section 2.4). More
formally, for all k ≥ d it holds that

xextr = x?, (3.14)

where xextr is the output of Algorithm 3 applied to {(xi, ∇f(xi))}i=0,...,k. This is a natural
consequence of the fact that xextr is the best point in x0 + span{∇f(x0), . . . ,∇f(xk−1)},
as provided by (3.8).

3.2.2 Computational Complexity

The computational complexity of Algorithm 3 is O(dk2 + k3), where k is the length of
the sequence of gradients and d is the dimension of the ambient space. The first term
originates from the matrix-matrix multiplication GTG in step 1, and the second one
comes from solving a (k + 1)× (k + 1) matrix in step 2. The length k being often much
smaller than d, the resulting complexity is typically O(dk2).

3.2. Nonlinear Acceleration for Quadratic Minimization 25

Low-rank updates. When using the nonlinear acceleration method in parallel with a
first-order method generating a growing sequence of iterates {xi}i=0,...,k, an extrapolation
step can be computed each time a new iterate is produced. we can reduce the per iteration
complexity up to O(dk) by computing the matrix GTG and the coefficients c? using
low-rank updates (Sidi, 1991).

Limited-memory. Because the iteration complexity of nonlinear acceleration grows with
the length of the input sequence, it might become costly to compute an extrapolation. It
is therefore common to use nonlinear acceleration only with the last few iterates produced
by the first-order method. More formally, if we impose a maximum memory of m pairs, we
compute the extrapolation as follow when k ≥ m. More formally, if we impose a maximum
memory of m pairs, one can use Algorithm 3 with input {(xk−m+i, ∇f(xk−m+i))}i=1,...,m.

3.2.3 Online Nonlinear Acceleration

So far, we have seen a post-processing procedure that generates an extrapolated point
xextr from a sequence of pairs {xi,∇f(xi)}i=0,...,k. If this sequence is generated by
a nondegenerate first-order method, then Corollary 3.2 shows that the gradient of
the extrapolated point xextr converges to zero at an optimal worst-case convergence
rate, without any hyper-parameters. Perhaps surprisingly, Algorithm 3 is itself not a
nondegenerate first-order method, and can therefore not be used recursively as is.

In what follows, we introduce a mixing parameter. This parameter transforms the
nonlinear acceleration mechanism to a nondegenerate first-order method without hurting
its worst-case performance. This enables using nonlinear acceleration recursively for
generating the whole sequence {xi}i=1,2,.... This technique is often referred to as online
nonlinear acceleration.

Mixing parameter. The idea underlying the mixing parameter is fairly simple: instead
of combining previous iterates, we combine gradient steps as follows:

xmixing
extr =

k∑
i=0

ci
(
xi − h∇f(xi)

)
, (3.15)

as provided by Algorithm 4. Furthermore, the use of an appropriate step size h can even
slightly improve the worst-case convergence speed of Algorithm 3.

Algorithm 4 Nonlinear acceleration (with mixing)
Input: Sequence of pairs {(xi, ∇f(xi))}i=0,...,k, mixing parameter h.
1: Form the matrix G = [∇f(x0), . . . , ∇f(xk)], and compute GTG.
2: Solve the linear system (GTG)z = 1, and compute c = z

zT 1 .
3: Form the extrapolated point xextr = ∑k

i=0 ci
(
xi − h∇f(xi)

)
.

Output: Approximate solution xextr.

26 Nonlinear Acceleration

Intuitively, this mixing between iterates and gradients emulates a gradient step on
the extrapolated point from Algorithm 3, that we call here xoffline

extr = ∑k
i=0 cixi,

xmixing
extr =

k∑
i=0

cixi − h
k∑
i=0

ci∇f(xi)

=
k∑
i=0

cixi − h∇f
(

k∑
i=0

cixi

)
=xoffline

extr − h∇f(xoffline
extr),

where the second equality comes from the fact that f is a quadratic function, and that∑k
i=0 ci = 1.
This mixing parameter requires tuning one hyper-parameter h, which can be chosen

in various ways. Proposition 3.2 shows that the mixing strategy slightly improves the
performance of nonlinear acceleration if h is set properly.

Proposition 3.2. Let x0 ∈ Rd be an initial point, f be the quadratic function from (3.6)
with µI � H � LI, and {xi}i=0,...,k be generated by a nondegenerate first-order method
initiated from x0. Then, for any k ≥ 0, it holds that

‖∇f(xmixing
extr)‖2 ≤ Ch‖∇f(xoffline

extr)‖2,

where xoffline
extr is obtained from Algorithm 3 applied to {(xi, ∇f(xi))}i=0,...,k, xmixing

extr is
the extrapolation with mixing from (3.15), and

Ch = max {1− µh ; Lh− 1} .

Moreover, the factor Ch is guaranteed to be smaller than one if h ∈ (0, 2
L), and takes its

minimal value at h = 2
L+µ .

Proof. We start with the identity

xmixing
extr = xoffline

extr − h∇f(xoffline
extr).

Because f is the quadratic function (3.6), the gradient of xmixing
extr reads

∇f(xmixing
extr) = H(xmixing

extr − x?)
= H(xoffline

extr − h∇f(xoffline
extr)− x?)

= ∇f(xoffline
extr)−Hh∇f(xoffline

extr)
= (I −Hh)∇f(xoffline

extr).

Therefore, we have the bound

‖∇f(xmixing
extr)‖2 ≤ ‖I −Hh‖2‖∇f(xoffline

extr)‖2,

and the desired result follows from µI � H � LI.

3.3. Regularized Nonlinear Acceleration Beyond Quadratics 27

Online nonlinear acceleration method. As previously underlined, the mixing parameter
transforms the nonlinear acceleration method into a nondegenerate first-order method.
We can therefore use it recursively. The online variant of the nonlinear acceleration
technique, with limited memory, is provided in Algorithm 5, using Algorithm 4 as a
subroutine. One should note that when m =∞ (no memory restriction), the worst-case
performance of offline version of nonlinear acceleration with mixing (Algorithm 4) is
also valid for its online variant (Algorithm 5). It follows from Proposition 3.2 that the
worst-case performance of Algorithm 4 and Algorithm 5 is no worse than that of offline
version of nonlinear acceleration (Algorithm 3), provided by Corollary 3.2.

Algorithm 5 Nonlinear acceleration (online version, limited memory)
Input: A differentiable function f , initial point x0, mixing parameter h, maximum

memory parameter m (optional, m =∞ by default).
1: Initialize Empty sequence S of pairs iterate/gradient.
2: for k = 0, . . . do
3: Compute ∇f(xk); append the pair S ← S ∪ {(xk, ∇f(xk))}.
4: if k ≥ m then
5: Discard the oldest pair from S.
6: end if
7: Compute the extrapolation xk+1 = [Algorithm 4](S, h).
8: end for

Output: Approximate solution xk+1.

In the next section, we see that nonlinear acceleration technique might suffer from
serious instability issues when applied beyond quadratic minimization. Perhaps luckily, a
simple regularization technique allows stabilizing the procedure beyond quadratics.

3.3 Regularized Nonlinear Acceleration Beyond Quadratics

Nonlinear acceleration suffers some serious drawbacks when used outside the restricted
setting of quadratic functions. In fact, Algorithm 3 and Algorithm 4 are numerically
highly unstable. This problem originates from the conditioning of the matrix GTG,
used to compute the coefficients {ci}i=0,...,k. To illustrate this statement, assume we
run Algorithm 3 with a noisy sequence of gradients {(xi, ∇f(xi) + ei)}i=0,...,k where the
sequence {ei}i=0,...,k is such that ‖ei‖2 ≤ ε for some ε > 0. Scieur et al. (2016, Proposition
3.1) show that the relative distance between c̃ (the coefficients computed using the noisy
sequence above) and its noise-free version c satisfies

‖c− c̃‖2
‖c‖2

= O
(
‖E‖2 ‖((G + E)T (G + E))−1‖2

)
. (3.16)

where E , [e0, . . . , ek] is the noise matrix. In this bound, the perturbation impacts the
solution proportionally to its norm and to the conditioning of G + E.

28 Nonlinear Acceleration

(a) (b)

Figure 3.1: Illustration of the sensitivity of nonlinear acceleration when applying nonlinear acceleration
to gradient descent, to Nesterov’s method (see Section 4), and using its online variant (Algorithm 5) to
minimize some random quadratic function. Figure 3.1a: the condition number of the matrix GTG, which
grows exponentially with its size (the plateau on the right is caused by numerical errors). Figure 3.1b:
the norm of the vector of coefficients c.

Unfortunately, even for small perturbations, the condition number of G + E and
the norm of the vector c are usually huge. In fact, G has a Krylov matrix structure,
which is notoriously poorly conditioned (Tyrtyshnikov, 1994). Thereby, even a very small
perturbation E might have a significant impact on performance. For illustrating this,
let us briefly illustrate the link between G and Krylov matrices: consider using gradient
descent with step size γ on a quadratic function; the iterates follow the rule

xk+1 − x? = (1− γH)k(x0 − x?) ⇔ ∇f(xk+1) = (1− γH)k∇f(x0).

Thereby, a matrix G formed by these expressions has the form

G =
[
∇f(x0), (I− γH)∇f(x0), (I− γH)2∇f(x0), . . .

]
,

which shows that G is in fact a Krylov matrix—by definition, a Krylov matrix K

associated with a matrix A and vector v is defined as K = [v, Av, A2v, . . .].
In Figure 3.1, we show the norm of c and the condition number of the matrix

GTG when it is formed from iterates of gradient descent, accelerated gradient descent
(see Section 4), and nonlinear acceleration (in the online setting, see Algorithm 5) for
minimizing some randomly generated quadratic function. Figure 3.1a shows that even
after 3 iterations, the system can already be considered singular (i.e., the condition
number exceeds 1016).

For stabilizing the method, it is common to regularize the linear system. The resulting
algorithm is often referred to as regularized nonlinear acceleration (RNA) (Scieur et al.,
2016). The following section is devoted to some theoretical properties of this method.

3.3.1 Regularized Nonlinear Acceleration

Regularized nonlinear acceleration (RNA) consists of using Algorithm 3 with a regular-
ization, thereby rendering the method less sensitive to noise. In short, the base operation

3.3. Regularized Nonlinear Acceleration Beyond Quadratics 29

underlying RNA is to solve

argmin
cT 1=1

‖Gc‖22
‖G‖22

+ λ‖c− cref‖22 (3.17)

in the variable c ∈ Rk, where cref is some reference vector. The effect of regularization is
therefore to force c to be close to cref. Of course, it makes more sense to pick cref summing
to one. A common choice is to pick cref = 1/k, which would enforce the procedure to be
“not too far” from a simple averaging of the iterates. Another possibility is cref = [0k−1, 1],
which puts more weight on the last iterate. The division by ‖G‖22 is for scaling purposes,
as it makes λ dimensionless. The resulting method is slightly more complicated than its
previous version without regularization and is provided in Algorithm 6. When cref = 1/k,
the procedure simplifies to Algorithm 7.

Algorithm 6 Regularized nonlinear acceleration (RNA)
Input: Sequence of pairs {(xi, ∇f(xi))}i=0,...,k, mixing parameter h, regularization term

λ > 0, reference vector cref.
1: Form G = [∇f(x0), . . . , ∇f(xk)], compute G = GTG

‖GTG‖2
.

2: Solve the linear system (G + λI)w = λcref.
3: Solve the linear system (G + λI)z = 1.
4: Compute the coefficients c = w + z (1−wT 1)

zT 1
5: Form the extrapolated point xextr = ∑k

i=0 ci (xi − h∇f(xi)).
Output: Approximate solution xextr.

Algorithm 7 Regularized nonlinear acceleration (with cref = 1/k)
Input: Sequence of pairs {(xi, ∇f(xi))}i=0,...,k, mixing parameter h, regularization term

λ > 0.
1: Form G = [∇f(x0), . . . , ∇f(xk)] and compute G = GTG

‖GTG‖2
.

2: Solve the linear system (G + λI)z = 1/k.
3: Compute the coefficients c = z

zT 1 .
4: Form the extrapolated point xextr = ∑k

i=0 ci (xi − h∇f(xi)).
Output: Approximate solution xextr.

Online regularized nonlinear acceleration. As in the quadratic case, Algorithm 6 and
Algorithm 7 could be used as subroutines in the online nonlinear acceleration method
(Algorithm 5), thereby forming the regularized version of the online acceleration algorithm.

3.3.2 Perturbed Linear Gradients

In this section, we consider the problem of minimizing a twice continuously differentiable
convex function f , as in (3.1), beyond quadratic problems. For doing that, we introduce

30 Nonlinear Acceleration

perturbed linear gradients. As before, we consider iterates {xi}i=0,1,... originating from a
first-order method satisfying

xk+1 ∈ x0 + span{∇f(x0), ∇f(x1), . . . ,∇f(xk)}.

However, ∇f(x) is now no longer the gradient of a quadratic function. Instead, gradients
of f can be written as a sum of the gradients of a quadratic function with a perturbation
term e(x), as follows:

∇f(x) = H(x− x?) + e(x), with H : 0 ≺ µI � H � LI. (3.18)

Indeed, it follows from twice continuous differentiability of f that

f(x) = f? + 〈∇f(x?)︸ ︷︷ ︸
=0

;x− x?〉+ 1
2〈x− x?;∇

2f(x?)(x− x?)〉+O(‖x− x?‖32).

Therefore, f(x) can be approximated by the quadratic function (3.18) with H = ∇2f(x?).
Similarly, its gradient reads

∇f(x) = ∇f(x?)︸ ︷︷ ︸
=0

+∇2f(x?)(x− x?) + e(x) = H(x− x?) + e(x),

where e(x) is the first-order Taylor remainder of the gradient. Thus, minimizing a
non-quadratic function is equivalent to minimizing a perturbed quadratic one with a
second-order error on its gradient:

e(xk) = ∇f(xk)−H(xk − x?)
(
⇒ ‖e(xk)‖2 = O(‖xk − x?‖22)

)
, (3.19)

where H = ∇2f(x?).

3.3.3 Convergence Bound

Using a perturbation argument, it is possible to derive a convergence guarantee for
RNA. We state here a simplified version of (Scieur et al., 2018, Theorem 3.2), which
describes how regularization balances acceleration and stability in Algorithm 7. We
discuss convergence rates in greater detail in what follows.

Theorem 3.3. Let x0 ∈ Rd, f be a twice continuously differentiable function with
minimum x? and whose gradient ∇f follows (3.18) with ‖e(xi)‖2 ≤ ε. Let {xi}i=0,...,k be
generated by a nondegenerate first-order method initiated from x0. Then, for any k ≥ 0,
it holds that

‖H(xextr − x?)‖2

≤ ‖I− hH‖2

V [µ,L]
k (λ)‖H(x0 − x?)‖2︸ ︷︷ ︸

acceleration

+O

(√
1 + 1

λ
ε

)
︸ ︷︷ ︸

stability

 ,

3.3. Regularized Nonlinear Acceleration Beyond Quadratics 31

where xextr is the output of Algorithm 7 applied to {(xi, ∇f(xi))}i=0,...,k with parameters
h, λ > 0, and V

[µ,L]
k (λ) is a constant that corresponds to the maximum value on the

interval [µ,L] of the regularized Chebyshev polynomial, i.e,

V
[µ,L]
k (λ) = max

x∈[µ,L]
|C [µ,L],λ
k (x)|,

with C [µ,L],λ
k = argmin

P∈Pk,
P (0)=1

max
x∈[µ,L]

P 2(x) + λ‖GTG‖2‖P‖22,
(3.20)

where ‖P‖2 is the norm of the vector of coefficients of the polynomial P .

This theorem states that regularization helps stabilizing the algorithm while slowing
down the convergence rate. The regularized Chebyshev polynomial is somehow a mid-
point between the classical shifted Chebyshev polynomial C [µ,L]

k (from (2.15)) and the
polynomial whose coefficients are defined by 1/k (the polynomial that averages the
iterates {xi}i=0,...,k). By construction, its maximum value is always larger than that of
the Chebyshev polynomial, but the norm of its coefficients is smaller. Unfortunately,
there is as yet no known explicit expression of the regularized Chebyshev polynomial. To
the best of our knowledge, its value can nevertheless be computed numerically (Barré
et al., 2020b).

This mid-point between Chebyshev coefficients and the simple averaging of iterates
is also natural in the context of noisy iterations. When the noise is negligible, a small
regularization parameter combines the iterates {xi}i=0,...,k using nearly the classical
Chebyshev weights. When the noise is more substantial, a larger regularization parameter
brings the vector of coefficients c closer to the average 1/k, thereby improving the
“stability term” while rendering the “acceleration” less effective.

3.3.4 Asymptotic Convergence Rate

We briefly discuss the behavior of RNA when the initial point x0 approaches the solution
x?. In particular, the next proposition shows that if the perturbation magnitude ε
decreases faster than ‖H(x0 − x?)‖2, the parameter λ can be adjusted to ensure an
asymptotic convergence rate comparable to that of the Chebyshev method on quadratic
problems (see Section 2).

Informally, the theorem exploits the fact that as x0 approaches x?, f gets closer to
its quadratic approximation around x?. Thereby, an appropriate tuning of RNA allows
matching (asymptotically) the convergence rate of nonlinear acceleration on quadratics
(see Theorem 3.1).

Proposition 3.3. Let x0 ∈ Rd, f be a twice continuously differentiable function with
minimum x?, whose gradient ∇f follows (3.18) with ‖e(xi)‖2 ≤ ε. Let {xi}i=0,...,k be
generated by a nondegenerate first-order method initiated from x0. If we have

ε = O(‖x0 − x?‖α2), α > 1,

32 Nonlinear Acceleration

and if we set λ ∝ ‖x0 − x?‖s2 (proportional to ‖x0 − x?‖s2), where 0 < s < 2(α− 1), then
it holds that

lim
x0→x?

‖H(xextr − x?)‖2
‖H(x0 − x?)‖2

≤ ‖I− hH‖2
2

ξk + ξ−k
where ξ =

√
L
µ + 1√
L
µ − 1

,

where xextr is the output of Algorithm 7 applied to the sequence {(xi,∇f(xi))}i=0,...,k
with parameters h, λ > 0.
Proof. To simplify the notation, set R , ‖H(x0 − x?)‖2. We start from the result of
Theorem 3.3 and divide both sides by R:

‖H(xextr − x?)‖2
R

≤ ‖I− hH‖2

(
V

[µ,L]
k (λ) +O

(√
1 + 1

λ

ε

R

))
.

Since λ ∝ Rs and ε = O(Rα),
‖H(xextr − x?)‖2

R

≤ ‖I− hH‖2
(
V

[µ,L]
k (λ) +

√
O(R2(α−1)) +O(R2(α−1)−s)

)
.

When x0 → x?, we have R→ 0 and
R2(α−1) → 0 (since α > 1),

R2(α−1)−s → 0 (since s < 2(α− 1)).
Finally, in (3.20) the regularization parameter λ‖GTG‖2 = O(R2)→ 0. Since the (non-
regularized) shifted Chebyshev polynomial C [µ,L]

k = C
[µ,L],0
k is a feasible solution of (3.20),

we have the following bounds:(
V

[µ,L]
k (λ)

)2
= max

x∈[µ,L]
|C [µ,L],λ
k (x)|2,

≤
{

max
x∈[µ,L]

|C [µ,L],λ
k (x)|2

}
+ λ‖GTG‖2‖C [µ,L],λ

k ‖22,

= min
P∈Pk,
P (0)=1

max
x∈[µ,L]

P 2(x) + λ‖GTG‖2‖P‖22,

≤
{

max
x∈[µ,L]

|C [µ,L]
k (x)|2

}
+ λ‖GTG‖2‖C [µ,L]

k ‖22.

As λ→ 0 we have that the upper bound on (V [µ,L]
k (λ) converges to the maximum value

of the regular (shifted) Chebyshev polynomial, thereby reaching the desired claim.

In short, the previous theorem states that the asymptotic convergence rate matches
the rate of Chebyshev’s method as soon as λ ∝ ‖x0 − x?‖s2 is decreasing (condition
s > 0), but not too quickly compared to the perturbation magnitude ε = O(‖x0 − x?‖α2)
(condition s < 2(α − 1)), which is achievable only when α > 1. This condition is met,
for instance, when accelerating twice continuously differentiable functions with gradient
descent: the error decreases as O(‖x0 − x?‖22), see (3.19), and therefore α = 2 > 1.

3.4. Extensions 33

3.4 Extensions

The previous sections presented the nonlinear acceleration mechanism for unconstrained
convex quadratic minimization. It also contained an analysis of its regularized version
when applied beyond quadratics. In this section, we briefly cover two natural extensions:
(i) the application of nonlinear acceleration to iterates that are corrupted by a stochastic
noise, and (ii) the application of nonlinear acceleration to constrained/composite convex
optimization problems when a projection/proximal operator is used.

Stochastic gradients. In the common situation where the first-order method under
consideration only has access to stochastic estimates ∇̃f(x) of the gradient (satisfying
E[∇̃f(xi)] = ∇f(xi)) one can adapt the perturbation model

∇̃f(xi) = H(xi − x?) + ei,

to ei being the sum of a stochastic noise with a Taylor remainder. This is typically the
case when applying RNA to stochastic gradient descent (SGD) and related methods. In
this case, Theorem 3.3 holds in expectation under standard assumptions (Scieur et al.,
2017a), such as a bounded variance of ei. However, the asymptotic convergence result
from Proposition 3.3 may not be achieved. Indeed, in this setting, Proposition 3.3 also
holds in expectation under the condition

E[‖e(xi)‖2] = O(‖x0 − x?‖α2), α > 1.

Unfortunately, an asymptotic acceleration is not always possible. For instance, when
trying to accelerate the fixed step SGD, we have ε = O(1) (i.e., α = 0) and the asymptotic
guarantee does not apply. This is probably not a surprise as this SGD does not converge to
the optimum, hence there is no apparent reason for any sequence extrapolation technique
to work at all. Fortunately, Algorithm 6 does usually work for “variance reduced” first-
order methods (Scieur et al., 2017a), such as SAG (Schmidt et al., 2017), SAGA (Defazio
et al., 2014a), or SVRG (Johnson and Zhang, 2013).

Nonlinear acceleration of the proximal gradient method. It is common to apply
first-order methods to composite convex minimization problems of the form:

min
x∈Rd
{F (x) , f(x) + h(x)}, (3.21)

where f is a smooth strongly convex function (this class of functions is used intensively
in Section 4; see Definition 4.1) and h is a closed, proper, and convex function (i.e., h has
a closed, non-empty, and convex epigraph) and whose proximal operator is available:

proxγh(x) , argmin
z

{
γh(z) + 1

2‖x− z‖
2
2

}
(3.22)

for some step size γ > 0. Problem (3.21) can then be approached iteratively via the
proximal gradient method:

xk+1 = proxγh(xk − γ∇f(xk)). (3.23)

34 Nonlinear Acceleration

We omit most of the details on proximal algorithms; see Section 4 and Section 5 for more
details and references. For instance, when h is the indicator function of a non-empty
closed convex set C, the proximal operator corresponds to an orthogonal projection onto
C and the proximal gradient method reduces to the projected gradient method.

Unfortunately, a naive use of nonlinear acceleration on the iterates {xi}i=0,...,k does
not immediately work in this context, for several reasons. In particular, it is not possible
to ensure that the extrapolated point xextr belongs to dom(h) (or to the set C when h
is an indicator function for C). Moreover, due to the use of the proximal operator, the
iterates {xi}i=0,...,k do not necessarily satisfy the span assumption (3.4).

Recently, Mai and Johansson (2020) adapted the Anderson Acceleration method to
handle a large class of constrained and non-smooth composite problems. The main idea
is as follows: instead of accelerating the sequence {xi}i=0,...,k generated by the proximal
gradient method (3.23), we accelerate an alternate sequence {zi}i=0,...,k which satisfies

zi+1 = proxγh(zi)− γ∇f
(
proxγh(zi)

)
, z1 = x0 − γ∇f(x0).

This sequence {zi}i=0,...,k corresponds to the sequence generated by (3.23) with the
ordering of the gradient and proximal steps being swapped.

This trick allows obtaining convergence bounds for nonlinear acceleration in the
proximal setup under very few changes in the algorithm. In particular, Mai and Johansson
(2020) show that using Algorithm 8 in the presence of a proximal operator does not
change the convergence analysis—using Clarke’s generalized Jacobian (Clarke, 1990),
semi-smoothness (Mifflin, 1977; Qi and Sun, 1993) and assuming that the function h is
twice epi-differentiable and that h is twice-differentiable around the solution x?. We refer
the reader to (Rockafellar and Wets, 2009, Section 13) for a comprehensive treatment of
epi-differentiability.

Algorithm 8 Online regularized nonlinear acceleration with a proximal operator
Input: Differentiable function f , closed proper convex function h with proximal operator

available, initial point x0, step size γ, regularization term λ and reference vector cref.
1: Initialize z1 = x0 − γ∇f(x0), x1 = proxγh(z1), empty sequence S of pairs iter-

ate/gradient.
2: for k = 1 . . . do
3: Compute gk = γ∇f(xk)+zk−xk

γ , then append the pair S ← S ∪ {(zk, gk)}.
4: Compute the extrapolation zk+1 = [Algorithm 6](S, γ, λ, cref).
5: xk+1 = proxγh(zk+1).
6: end for

Output: Approximate solution xk+1.

3.5. Globalization Strategies and Speeding-up Heuristics 35

3.5 Globalization Strategies and Speeding-up Heuristics

As for many standard optimization methods, such as quasi-Newton methods, RNA only
has local convergence guarantees beyond quadratics. Therefore, it is common to embed
the mechanism with some globalization strategies, a.k.a. safeguards. Those strategies
ensure not to deteriorate too much the performance of the initial first-order method in
cases where RNA is used beyond its guaranteed range of applications. Those strategies
can also be seen as speeding-up heuristics.

Descent condition. It is in general not guaranteed that the extrapolated point xextr is
better than any iterate of the sequence {xi}i=0,...,k produced by the original method. This
situation might for example occur when extrapolating with a bad mixing or regularization
parameter, or simply when the error terms are too large. One classical way of limiting
the impact of such problems is by checking some descent condition. For instance, one
might consider “accepting” xextr only if it is better than previous iterates {xi}i=0,...,k:

f (xextr) < min
i∈{0,...,k}

f(xi),

and to discard it otherwise.

Line-search. Nonlinear acceleration requires the selection of a mixing parameter, which
might be difficult to tune in practice. One common trick is to choose it via a line-search
strategy. That is, defining:

xextr(h) =
k∑
i=0

(cixi − h∇f(xi)) ,

one can choose h by approximately solving argminh f (xextr(h)).

3.6 Notes and References

Nonlinear acceleration techniques have been studied extensively during recent decades,
and excellent reviews can be found in (Smith et al., 1987; Jbilou and Sadok, 1991;
Brezinski and Zaglia, 1991; Jbilou and Sadok, 1995; Jbilou and Sadok, 2000; Brezinski,
2001; Brezinski and Redivo–Zaglia, 2019). The first usage of an acceleration technique
for fixed point iteration can be traced back to (Gekeler, 1972; Brezinski, 1971; Brezinski,
1970).

There are numerous independent works leading to methods similar to those described
here. The most classical, and probably the most similar, is Anderson acceleration (An-
derson, 1965), which corresponds exactly to the online mode of nonlinear acceleration
(without regularization). Despite it being an old algorithm, there has been a recent uptake
of interest in the convergence analysis (Walker and Ni, 2011; Toth and Kelley, 2015) of
Anderson acceleration thanks to its good empirical performance, and strong connection
with quasi-Newton methods (Fang and Saad, 2009).

36 Nonlinear Acceleration

Other versions of nonlinear acceleration use different arguments but behave similarly.
For instance, minimal polynomial extrapolation (MPE), which uses the properties of the
minimal polynomial of a matrix (Cabay and Jackson, 1976); reduced rank extrapolation
(RRE); and the Mesina method (Mešina, 1977; Eddy, 1979) are also variants of Anderson
acceleration. The properties and equivalences of these approaches have been studied
extensively during the past decades (Sidi, 1988; Ford and Sidi, 1988; Sidi, 1991; Jbilou
and Sadok, 1991; Sidi and Shapira, 1998; Sidi, 2008; Sidi, 2017a; Sidi, 2017b; Brezinski
et al., 2018; Brezinski et al., 2020). Unfortunately, these methods do not extend well to
nonlinear functions, especially due to conditioning problems (Sidi, 1986; Sidi and Bridger,
1988; Scieur et al., 2016). Recent works have nevertheless proven the convergence of
such methods, provided that good conditioning of the linear system (Sidi, 2019) can be
ensured.

There are also other classes of nonlinear acceleration algorithms, based on existing
algorithms, for accelerating the convergence of scalar sequences (Brezinski, 1975). For
instance, the topological epsilon vector algorithm (TEA) extends the idea of the scalar
ε-algorithm of (Wynn, 1956) to vectors.

4
Nesterov Acceleration

This section presents a systematic interpretation of the acceleration of the gradient
method stemming from Nesterov’s original work (Nesterov, 1983). The early parts of the
section are devoted to the gradient method and the “optimized gradient method,” due
to Drori and Teboulle (2014) and Kim and Fessler (2016). The motivations and ideas
underlying the latter are intuitive and very similar to those behind the introduction of
Chebyshev methods for optimizing quadratic functions (see Section 2). Furthermore, the
optimized gradient method has a relatively simple format and proof and can be used as an
inspiration for developing numerous variants with wider ranges of applications, including
Nesterov’s early accelerated gradient methods (Nesterov, 1983; Nesterov, 2013) and
the fast iterative shrinkage-thresholding algorithm (Beck and Teboulle, 2009a, FISTA).
Although some parts of this section are more technical, we believe all the ideas can be
reasonably well understood even when skipping, or skimming through the algebraic proofs.
The section and the proofs are organized so that each time an additional ingredient
(strong convexity, constraints, etc.) is included, its inclusion only requires a few additional
ingredients compared to the previous (simpler) proofs of the base versions of the method.

We start with the theory and interpretation of acceleration in a simple setting: smooth
unconstrained convex minimization in a Euclidean space. All subsequent developments
follow from the same template, namely a linear combination of regularity inequalities, with
additional ingredients being added one by one. The next part is devoted to methods that
take advantage of strong convexity by using the same ideas and algorithmic structures.
On the way, we provide a few different (equivalent) templates for the algorithms, since
in more advanced settings, those templates do not generalize in the same way. We
then recap and discuss a few practical extensions for handling constrained problems,
nonsmooth regularization terms, unknown problem parameters/line-searches, and non-

37

38 Nesterov Acceleration

Euclidean geometries. Finally, we briefly discuss a popular ordinary differential equation
(ODE)-based interpretation of Nesterov’s method. Techniques for obtaining the worst-case
analyses presented throughout this text are presented in Appendix C, and notebooks for
simpler reproduction of the proofs are provided in Section 4.9.

4.1 Introduction

In the first part of this section, we consider smooth unconstrained convex minimization
problems. This type of problems is a direct extension of unconstrained convex quadratic
minimization problems where the quadratic function has eigenvalues bounded above by
some constant. More precisely, we consider the simple unconstrained differentiable convex
minimization problem

f? = min
x∈Rd

f(x), (4.1)

where f is convex with an L-Lipschitz gradient (we call such functions convex and
L-smooth, see Definition 4.1 below), and we assume throughout that there exists a
minimizer x?. The goal of the methods presented below is to find a candidate solution
x satisfying f(x) − f? ≤ ε for some ε > 0. Depending on the target application, other
quality measures, such as guarantees on ‖∇f(x)‖2 or ‖x− x?‖2, might be preferred. We
refer to Section 4.9 “Changing the performance measure”, for discussions on this topic.

We start with the analysis of gradient descent and then show that its iteration
complexity can be significantly improved using an acceleration technique proposed
by Nesterov (1983).

After presenting the theory for the smooth convex case we see how it goes in the
smooth strongly convex one. This class of problems extends to that of unconstrained
convex quadratic minimization problems where the quadratic function has eigenvalues
respectively bounded above and below by some constants L and µ.

Definition 4.1. Let 0 ≤ µ < L < +∞. A continuously differentiable function f : Rd → R
is L-smooth and µ-strongly convex (denoted f ∈ Fµ,L) if and only if

• (L-smoothness) for all x, y ∈ Rd, it holds that

f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2
2, (4.2)

• (µ-strong convexity) for all x, y ∈ Rd, it holds that

f(x) ≥ f(y) + 〈∇f(y);x− y〉+ µ

2 ‖x− y‖
2
2. (4.3)

Furthermore, we denote by q = µ
L the inverse condition number (that is, q = 1

κ , with κ is
the usual condition number as used e.g., in Section 2) of functions in the class Fµ,L.

4.1. Introduction 39

Notation. We use the notation F0,L for the set of smooth convex functions. By extension,
we use F0,∞ for the set of (possibly non-differentiable) proper closed convex functions
(i.e., convex functions whose epigraphs are non-empty closed convex sets). Finally, we
denote by ∂f(x) the subdifferential of f at x ∈ Rd and by gf (x) ∈ ∂f(x) a particular
subgradient of f at x.

Smooth strongly convex functions. Figure 4.1 provides an illustration of the global
quadratic upper approximation (with curvature L) on f(·) due to smoothness and of the
global quadratic lower approximation (with curvature µ) on f(·) due to strong convexity.

x

f

•

y

f(y)

x

f

•

y

f(y)

Figure 4.1: Let f(·) (blue) be a differentiable function. (Left) Smoothness: f(·) (blue) is L-smooth if and
only if it is upper bounded by f(y) + 〈∇f(y); .− y〉+ L

2 ‖.− y‖
2
2 (dashed, brown) for all y. (Right) Strong

convexity: f(·) (blue) is µ-strongly convex if and only if it is lower bounded by f(y) + 〈∇f(y); .− y〉+
µ
2 ‖.− y‖

2
2 (dashed, brown) for all y.

A number of inequalities can be written to characterize functions in Fµ,L: see, for
example, Nesterov (2003, Theorem 2.1.5). When analyzing methods for minimizing
functions in this class, it is crucial to have the right inequalities at our disposal, as
worst-case analyses essentially boil down to appropriately combining such inequalities.
We provide the most important inequalities along with their interpretations and proofs
in Appendix A. In this section, we only use three. First, we use the quadratic upper
and lower bounds arising from the definition of smooth strongly convex functions, that
is, (4.2) and (4.3). For some analyses however, we need an additional inequality, provided
by the following theorem. This inequality is often referred to as an interpolation (or
extension) inequality. Its proof is relatively simple: it only consists of requiring all
quadratic lower bounds from (4.3) to be below all quadratic upper bounds from (4.2)
(details in Appendix A.1). It can be shown that worst-case analyses of all first-order
methods for minimizing smooth strongly convex functions can be performed using only
this inequality for some specific values of x and y (details in Appendix C).

40 Nesterov Acceleration

Theorem 4.1. Let f be a continuously differentiable function. f is L-smooth and µ-
strongly convex (possibly with µ = 0) if and only if for all x, y ∈ Rd, it holds that

f(x) ≥ f(y) + 〈∇f(y);x− y〉+ 1
2L‖∇f(y)−∇f(x)‖22

+ µL

2(L− µ)‖x− y −
1
L(∇f(x)−∇f(y))‖22.

(4.4)

As discussed later in Section 4.3.3, this inequality has some flaws. Therefore, we only
use (4.2) and (4.3) whenever possible.

Before continuing to the next section, we mention that both smoothness and strong
convexity are strong assumptions. More generic assumptions are discussed in Section 6
to obtain improved rates under weaker assumptions.

4.2 Gradient Method and Potential Functions

In this section, we analyze gradient descent using the concept of potential functions.
The resulting proofs are technically simple, although they might not seem to provide
any direct intuition about the method at hand. We use the same ideas to analyze a
few improvements on gradient descent before providing interpretations underlying this
mechanism.

4.2.1 Gradient Descent

The simplest and probably most natural method for minimizing differentiable functions
is gradient descent. It is often attributed to Cauchy (1847) and consists of iterating

xk+1 = xk − γk∇f(xk),

where γk is some step size. There are many different techniques for picking γk, the simplest
of which is to set γk = 1/L, assuming L is known—otherwise, line-search techniques are
typically used; see Section 4.7. Our present objective is to bound the number of iterations
required by gradient descent to obtain an approximate minimizer xk of f that satisfies
f(xk)− f? ≤ ε.

4.2.2 A Simple Proof Mechanism: Potential Functions

Potential (or Lyapunov/energy) functions are classical tools for proving convergence rates
in the first-order literature, and a nice recent review of this topic is given by Bansal
and Gupta (2019). For gradient descent, the idea consists in recursively using a simple
inequality (proof below),

(k + 1)(f(xk+1)− f?) + L

2 ‖xk+1 − x?‖22 ≤ k(f(xk)− f?) + L

2 ‖xk − x?‖
2
2,

4.2. Gradient Method and Potential Functions 41

that is valid for all f ∈ F0,L and all xk ∈ Rd when xk+1 = xk− 1
L∇f(xk). In this context,

we refer to
φk , k(f(xk)− f?) + L

2 ‖xk − x?‖
2
2

as a potential and use φk+1 ≤ φk as the building block for the worst-case analysis. Once
such a potential inequality φk+1 ≤ φk is established, a worst-case guarantee can easily be
deduced through a recursive argument, yielding

N(f(xN)− f?) ≤ φN ≤ φN−1 ≤ . . . ≤ φ0 = L

2 ‖x0 − x?‖22, (4.5)

and hence, f(xN)− f? ≤ L
2N ‖x0 − x?‖22. We also conclude that the worst-case accuracy

of gradient descent is O(N−1) or equivalently, that its iteration complexity is O(ε−1).
Therefore, the main inequality to be proved for this worst-case analysis to work is the
potential inequality φk+1 ≤ φk. In other words, the analysis of N iterations of gradient
descent is reduced to the analysis of a single iteration, using an appropriate potential.
This kind of approach was already used for example by Nesterov (1983), and many
different variants of the potential function can be used to prove convergence of gradient
descent and related methods in similar ways.

Theorem 4.2. Let f be an L-smooth convex function, x? ∈ argminx f(x), and k ∈ N.
For any Ak ≥ 0 and xk ∈ Rd, it holds that

Ak+1(f(xk+1)− f?) + L

2 ‖xk+1 − x?‖22

≤ Ak(f(xk)− f?) + L

2 ‖xk − x?‖
2
2,

with xk+1 = xk − 1
L∇f(xk) and Ak+1 = 1 +Ak.

Proof. The proof consists of performing a weighted sum of the following inequalities:

• convexity of f between xk and x?, with weight λ1 = Ak+1 −Ak:

0 ≥ f(xk)− f? + 〈∇f(xk);x? − xk〉,

• smoothness of f between xk and xk+1 with weight λ2 = Ak+1:

0 ≥ f(xk+1)−
(
f(xk) + 〈∇f(xk);xk+1 − xk〉+ L

2 ‖xk − xk+1‖22
)
.

The last inequality is often referred to as the descent lemma since substituting xk+1
allows to obtain f(xk+1) ≤ f(xk)− 1

2L‖∇f(xk)‖22.

The weighted sum forms a valid inequality:

0 ≥λ1[f(xk)− f? + 〈∇f(xk);x? − xk〉]

+ λ2[f(xk+1)− (f(xk) + 〈∇f(xk);xk+1 − xk〉+ L

2 ‖xk − xk+1‖22)].

42 Nesterov Acceleration

Using xk+1 = xk − 1
L∇f(xk), this inequality can be rewritten (by completing the squares

or simply extending both expressions and verifying that they match on a term-by-term
basis) as follows:

0 ≥(Ak + 1)(f(xk+1)− f?) + L

2 ‖xk+1 − x?‖22

−Ak(f(xk)− f?)−
L

2 ‖xk − x?‖
2
2 + Ak+1 − 1

2L ‖∇f(xk)‖22
− (Ak+1 −Ak − 1)〈∇f(xk);xk − x?〉,

which can be reorganized and simplified to

(Ak + 1)(f(xk+1)− f?) + L

2 ‖xk+1 − x?‖22

≤Ak(f(xk)− f?) + L

2 ‖xk − x?‖
2
2 −

Ak+1 − 1
2L ‖∇f(xk)‖22

+ (Ak+1 −Ak − 1)〈∇f(xk);xk − x?〉

≤Ak(f(xk)− f?) + L

2 ‖xk − x?‖
2
2,

where the last inequality follows from picking Ak+1 = Ak + 1 and neglecting the last
residual term −Ak

2L ‖∇f(xk)‖22 (which is nonpositive) on the right-hand side.

A convergence rate for gradient descent can be obtained directly as a consequence of
Theorem 4.2, following the reasoning of (4.5), and the worst-case guarantee corresponds
to f(xN)− f? = O(A−1

N) = O(N−1). We detail this in the next corollary.

Corollary 4.3. Let f be an L-smooth convex function, and x? ∈ argminx f(x). For any
N ∈ N, the iterates of gradient descent with step size γ0 = γ1 = . . . = γN = 1

L satisfy

f(xN)− f? ≤
L‖x0 − x?‖22

2N .

Proof. Following the reasoning of (4.5), we recursively use Theorem 4.2, starting with
A0 = 0. That is, we define

φk , Ak(f(xk)− f?) + L

2 ‖xk − x?‖
2
2

and recursively use the inequality φk+1 ≤ φk from Theorem 4.2, with Ak+1 = Ak + 1 and
A0 = 0; hence, Ak = k. We thus obtain

AN (f(xN)− f?) ≤ φN ≤ . . . ≤ φ0 = L

2 ‖x0 − x?‖22,

resulting in the desired statement

f(xN)− f? ≤
L

2AN
‖x0 − x?‖22 = L

2N ‖x0 − x?‖22.

4.3. Optimized Gradient Method 43

4.2.3 How Conservative is this Worst-case Guarantee?

Before moving to other methods, we show that the worst-case rate O(N−1) of gradient
descent is attained on very simple problems, motivating the search for alternate methods
with better guarantees. This rate is observed on, e.g., all functions that are nearly linear
over large regions. One such common function is the Huber loss (with x? = 0, arbitrarily):

f(x) =
{
aτ |x| − bτ if |x| ≥ τ,
L
2 x

2 otherwise,

with aτ = Lτ and bτ = −L
2 τ

2 to ensure its continuity and differentiability. On this
function, as long as the iterates of gradient descent satisfy |xk| ≥ τ , they behave as if the
function were linear, and the gradient is constant. It is therefore relatively easy to explicitly
compute all iterates. In particular, by picking τ = |x0|

2N+1 , we get f(xN)− f? = L‖x0−x?‖2
2

2(2N+1)
and reach the O(N−1) worst-case bound; see Drori and Teboulle (2014, Theorem 3.2).
Therefore, it appears that the worst-case bound from Corollary 4.3 for gradient descent
can only be improved in terms of the constants, but the rate itself is the best possible
one for this simple method; see, for example, (Drori and Teboulle, 2014; Drori, 2014) for
the corresponding tight expressions.

In the next section, we show that similar reasoning based on potential functions
produces methods with improved worst-case convergence rate O(N−2), compared to the
O(N−1) of vanilla gradient descent.

4.3 Optimized Gradient Method

Given that the complexity bound for gradient descent cannot be improved, it is reasonable
to look for alternate, hopefully better, methods. In this section, we show that accelerated
methods can be designed by optimizing their worst-case performance. To do so, we start
with a reasonably broad family of candidate first-order methods described by

y1 = y0 − h1,0∇f(y0),
y2 = y1 − h2,0∇f(y0)− h2,1∇f(y1),
y3 = y2 − h3,0∇f(y0)− h3,1∇f(y1)− h3,2∇f(y2),
...

yN = yN−1 −
N−1∑
i=0

hN,i∇f(yi).

(4.6)

Of course, methods in this form are impractical since they require keeping track of all
previous gradients. Neglecting this potential problem for now, one possibility for choosing
the step size {hi,j} is to solve a minimax problem:

min
{hi,j}

max
f∈F0,L

{
f(yN)− f?
‖y0 − x?‖22

: yN obtained from (4.6) and y0

}
. (4.7)

44 Nesterov Acceleration

In other words, we are looking for the best possible worst-case ratio among methods of
the form (4.6). Of course, different target notions of accuracy could be considered instead
of (f(yN)− f?)

/
‖y0 − x?‖22 , but we proceed with this notion for now.

It turns out that (4.7) has a clean solution, obtained by Kim and Fessler (2016), based
on clever reformulations and relaxations of (4.7) developed by Drori and Teboulle (2014)
(some details are provided in Section 4.9). Furthermore, this method has “factorized”
forms that do not require keeping track of previous gradients. The optimized gradient
method (OGM) is parameterized by a sequence {θk,N}k that is constructed recursively
starting from θ−1,N = 0 (or equivalently θ0,N = 1), using

θk+1,N =


1+
√

4θ2
k,N

+1
2 if k ≤ N − 2

1+
√

8θ2
k,N

+1
2 if k = N − 1.

(4.8)

We also mention that optimized gradient methods can be stated in various equivalent
formats, we provide two variants in Algorithm 9 and Algorithm 10 (a rigorous equivalence
statement is provided in Appendix B.1.1). While the shape of Algorithm 10 is more
common in accelerated methods, the equivalent formulation provided in Algorithm 9
allows for slightly more direct proofs.

Algorithm 9 Optimized gradient method (OGM), form I
Input: L-smooth convex function f , initial point x0, and budget N .
1: Initialize z0 = y0 = x0 and θ−1,N = 0.
2: for k = 0, . . . , N − 1 do

3: θk,N = 1+
√

4θ2
k−1,N+1
2

4: yk =
(
1− 1

θk,N

)
xk + 1

θk,N
zk

5: xk+1 = yk − 1
L∇f(yk)

6: zk+1 = x0 − 2
L

∑k
i=0 θi,N∇f(yk)

7: end for
Output: Approximate solution yN =

(
1− 1

θN,N

)
xN + 1

θN,N
zN with θN,N =

1+
√

8θ2
N−1,N+1
2 .

Direct approaches to (4.7) are rather technical—see details in (Drori and Teboulle,
2014; Kim and Fessler, 2016). However, showing that the OGM is indeed optimal on
the class of smooth convex functions can be accomplished indirectly by providing an
upper bound on its worst-case complexity guarantees and by showing that no first-order
method can have a better worst-case guarantee on this class of problems. We detail a
fully explicit worst-case guarantee for OGM in the next section. It consists in showing
that

φk , 2θ2
k−1,N

(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

)
+ L

2 ‖zk − x?‖
2
2 (4.9)

is a potential function for the optimized gradient method when
k < N (Theorem 4.4, below). For k = N , we need a minor adjustment (Lemma 4.5,

4.3. Optimized Gradient Method 45

Algorithm 10 Optimized gradient method (OGM), form II
Input: L-smooth convex function f , initial point x0, and budget N .
1: Initialize z0 = y0 = x0 and θ0,N = 1.
2: for k = 0, . . . , N − 1 do

3: θk+1,N =


1+
√

4θ2
k,N

+1
2 if k ≤ N − 2

1+
√

8θ2
k,N

+1
2 if k = N − 1.

4: xk+1 = yk − 1
L∇f(yk)

5: yk+1 = xk+1 + θk,N−1
θk+1,N

(xk+1 − xk) + θk,N
θk+1,N

(xk+1 − yk).
6: end for

Output: Approximate solution yN .

below) to obtain a bound on f(yN)− f? and not in terms of f(yN)− f? − 1
2L‖∇f(yN)‖22,

which appears in the potential.
As in the case of gradient descent, the proof relies on potential functions. Following

the recursive argument from (4.5), the convergence guarantee is driven by the convergence
speed of θ−2

k,N towards 0. We note that when k < N − 1,

θk+1,N =
1 +

√
4θ2
k,N + 1

2 ≥ 1 + 2θk,N
2 = θk,N + 1

2 , (4.10)

and therefore, θk,N ≥ k
2 + 1. We also directly obtain

θN,N =
1 +

√
8θ2
N−1,N + 1
2 ≥ 1 +

√
2(N + 1)2 + 1

2 ≥ N + 1√
2
, (4.11)

and hence, θ−2
N,N = O(N−2). Before providing the proof, we mention that it heavily relies

on inequality (4.4) with µ = 0. This inequality is key for formulating (4.7) in a tractable
way.

4.3.1 A Potential for the Optimized Gradient Method

The main point now is to prove that (4.9) is indeed a potential for the optimized gradient
method. We emphasize again that our main motivation for proving this is to show that
the OGM provides a good template algorithm for acceleration (i.e., a method involving
two or three sequences) and that the corresponding potential functions can also be used
as a template for the analysis of more advanced methods.

Note that the potential structure does not seem immediately intuitive: it was actually
found using computer-assisted proof design techniques; see Section 4.9 “On obtaining the
proofs in this section” and Appendix C for further references. In particular, the following
theorem can be found in Taylor and Bach (2019, Theorem 11).

46 Nesterov Acceleration

Theorem 4.4. Let f be an L-smooth convex function, x? ∈ argminx f(x), and N ∈ N.
For any k ∈ N with 0 ≤ k ≤ N − 1 and any yk−1, zk ∈ Rd, it holds that

2θ2
k,N

(
f(yk)− f? −

1
2L‖∇f(yk)‖22

)
+ L

2 ‖zk+1 − x?‖22

≤ 2θ2
k−1,N

(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

)
+ L

2 ‖zk − x?‖
2
2,

when yk and zk+1 are obtained from Algorithm 9.

Proof. Recall that the algorithm can be written as

yk =
(

1− 1
θk,N

)(
yk−1 −

1
L
∇f(yk−1)

)
+ 1
θk,N

zk

zk+1 = zk −
2θk,N
L
∇f(yk).

The proof consists of performing a weighted sum of the following inequalities.

• Smoothness and convexity of f between yk−1 and yk with weight λ1 = 2θ2
k−1,N :

0 ≥f(yk)− f(yk−1) + 〈∇f(yk); yk−1 − yk〉

+ 1
2L‖∇f(yk)−∇f(yk−1)‖22.

• Smoothness and convexity of f between x? and yk with weight λ2 = 2θk,N :

0 ≥ f(yk)− f? + 〈∇f(yk);x? − yk〉+ 1
2L‖∇f(yk)‖22.

Since the weights are nonnegative, the weighted sum produces a valid inequality:

0 ≥λ1

[
f(yk)− f(yk−1) + 〈∇f(yk); yk−1 − yk〉+ 1

2L‖∇f(yk)

−∇f(yk−1)‖22
]

+ λ2

[
f(yk)− f? + 〈∇f(yk);x? − yk〉+ 1

2L‖∇f(yk)‖22
]
,

(4.12)

which (either by completing the squares or simply by extending both expressions and
verifying that they match on a term-by-term basis) can be reformulated as

0 ≥λ1

[
f(yk)− f(yk−1) + 〈∇f(yk); yk−1 − yk〉

+ 1
2L‖∇f(yk)−∇f(yk−1)‖22

]
+ λ2

[
f(yk)− f? + 〈∇f(yk);x? − yk〉+ 1

2L‖∇f(yk)‖22
]

=2θ2
k,N

(
f(yk)− f? −

1
2L‖∇f(yk)‖22

)
+ L

2 ‖zk+1 − x?‖22

− 2θ2
k−1,N

(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

)
− L

2 ‖zk − x?‖
2
2

4.3. Optimized Gradient Method 47

0 ≥+ 2
θk,N

(
θ2
k−1,N + θk,N − θ2

k,N

)
〈∇f(yk); yk−1 − 1

L∇f(yk−1)− zk〉

+ 2
(
θ2
k−1,N + θk,N − θ2

k,N

)(
f(yk)− f? + 1

2L‖∇f(yk)‖22
)
.

The desired conclusion follows from picking θk,N ≥ θk−1,N satisfying

θ2
k−1,N + θk,N − θ2

k,N = 0,

and hence the choice (4.8), thus reaching

2θ2
k,N

(
f(yk)− f? −

1
2L‖∇f(yk)‖22

)
+ L

2 ‖zk+1 − x?‖22

≤ 2θ2
k−1,N

(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

)
+ L

2 ‖zk − x?‖
2
2.

A final technical fix is required now. To show that the optimized gradient method
is an optimal solution to (4.7), we need an upper bound on the function values, rather
than on the function values minus a squared gradient norm. This discrepancy is handled
by the following technical lemma.

Lemma 4.5. Let f be an L-smooth convex function, x? ∈ argminx f(x), and N ∈ N. For
any yN−1, zN ∈ Rd, it holds that

θ2
N,N (f(yN)− f?) + L

2 ‖zN −
θN,N
L ∇f(yN)− x?‖22

≤ 2θ2
N−1,N

(
f(yN−1)− f? −

1
2L‖∇f(yN−1)‖22

)
+ L

2 ‖zN − x?‖
2
2,

where yN is obtained from Algorithm 9.

Proof. The proof consists of performing a weighted sum of the following inequalities.

• Smoothness and convexity of f between yN−1 and yN with weight λ1 = 2θ2
N−1,N :

0 ≥f(yN)− f(yN−1) + 〈∇f(yN); yN−1 − yN 〉

+ 1
2L‖∇f(yN)−∇f(yN−1)‖22.

• Smoothness and convexity of f between x? and yN with weight λ2 = θN,N :

0 ≥ f(yN)− f? + 〈∇f(yN);x? − yN 〉+ 1
2L‖∇f(yN)‖22.

Since the weights are nonnegative, the weighted sum produces a valid inequality:

0 ≥λ1

[
f(yN)− f(yN−1) + 〈∇f(yN); yN−1 − yN 〉

+ 1
2L‖∇f(yN)−∇f(yN−1)‖22

]
+ λ2

[
f(yN)− f? + 〈∇f(yN);x? − yN 〉+ 1

2L‖∇f(yN)‖22
]
,

48 Nesterov Acceleration

which can be reformulated as

0 ≥θ2
N,N (f(yN)− f?) + L

2 ‖zN −
θN,N
L ∇f(yN)− x?‖22

− 2θ2
N−1,N

(
f(yN−1)− f? −

1
2L‖∇f(yN−1)‖22

)
− L

2 ‖zN − x?‖
2
2

+ 1
θN,N

(
2θ2
N−1,N − θ2

N,N + θN,N
)

× 〈∇f(yN); yN−1 − 1
L∇f(yN−1)− zN 〉

+
(
2θ2
N−1,N − θ2

N,N + θN,N
)(

f(yN)− f? + 1
2L‖∇f(yN)‖22

)
.

The conclusion follows from choosing θN,N ≥ θN−1,N such that
2θ2
N−1,N − θ2

N,N + θN,N = 0,
thereby reaching the desired inequality:

θ2
N,N (f(yN)− f?) + L

2 ‖zN −
θN,N
L ∇f(yN)− x?‖22

≤ 2θ2
N−1,N

(
f(yN−1)− f? −

1
2L‖∇f(yN−1)‖22

)
+ L

2 ‖zN − x?‖
2
2.

By combining Theorem 4.4 and the technical Lemma 4.5, we get the final worst-case
performance bound of the OGM on function values, detailed in the corollary below.
Corollary 4.6. Let f be an L-smooth convex function, and x? ∈ argminx f(x). For any
N ∈ N and x0 ∈ Rd, the output of the optimized gradient method (OGM, Algorithm 9
or Algorithm 10) satisfies

f(yN)− f? ≤
L‖x0 − x?‖22

2θ2
N,N

≤ L‖x0 − x?‖22
(N + 1)2 .

Proof. Defining, for k ∈ {1, . . . , N}

φk , 2θ2
k−1,N

(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

)
+ L

2 ‖zk − x?‖
2
2,

and
φN+1 , θ2

N,N (f(yN)− f?) + L

2 ‖zN −
θN,N
L ∇f(yN)− x?‖22,

we reach the desired statement:

θ2
N,N (f(yN)− f?) ≤ φN+1 ≤ φN ≤ . . . ≤ φ0 = L

2 ‖x0 − x?‖22,

using Theorem 4.4 and technical Lemma 4.5. We obtain the last bound by using θN,N ≥
(N + 1)/

√
2; see (4.11).

In the following section, we mostly use potential functions, relying directly on the
function value f(xk) instead of f(yk) for practical reasons discussed below. Note that
using the descent lemma (i.e., the inequality f(xk+1) ≤ f(yk)− 1

2L‖∇f(yk)‖22) directly on
the potential function allows us to obtain a bound on f(xk+1) for the OGM. This result
can be found in (Kim and Fessler, 2017, Theorem 3.1) without the “potential function”
mechanism.

4.3. Optimized Gradient Method 49

4.3.2 Optimality of Optimized Gradient Methods

A nice, commonly used guide for designing optimal methods consists of constructing
problems that are difficult for all methods within a certain class. This strategy results
in lower complexity bounds, and it is often deployed via the concept of minimax risk
(of a class of problems and a class of methods)—see, e.g., Guzmán and Nemirovsky
(2015)—which corresponds to the worst-case performance of the best method within the
prescribed class. In this section, we briefly discuss such results in the context of smooth
convex minimization, on the particular class of black-box first-order methods. The term
black-box is used to emphasize that the method has no prior knowledge of f (beyond the
class of functions to which f belongs, so methods are allowed to use L) and that it can
only obtain information about f by a evaluating its gradient/function value through an
oracle.

Of particular interest to us, Drori (2017) established that the worst-case performance
achieved by the optimized gradient method (see Corollary 4.6) on the class of smooth
convex functions cannot in general be improved by any black-box first-order method.

Theorem 4.7. (Drori, 2017, Theorem 3) Let L > 0, d,N ∈ N with d ≥ N + 1. For any
black-box first-order method that performs at most N calls to the first-order oracle
(f(·),∇f(·)), there exists a function f ∈ F0,L(Rd) and x0 ∈ Rd such that

f(xN)− f(x?) ≥
L‖x0 − x?‖22

2θ2
N,N

,

with x? ∈ argminx f(x), xN is the output of the method under consideration, and x0 its
input.

In the previous sections, we showed that θ2
N,N ≥

(N+1)2

2 . It is also relatively easy to
establish that

θk+1,N ≤
1 +

√
(2θk,N + 1)2

2 = 1 + θk,N ,

thereby obtaining θk,N ≤ k + 1 (because θ0,N = 1) as well as

θN,N =
1 +

√
8θ2
N−1,N + 1
2 ≤ 1 +

√
8N2 + 1
2 ≤

√
2N + 1.

We conclude (through Theorem 4.7) that the lower bound has the form

f(xN)− f(x?) ≥
L‖x0 − x?‖22

2θ2
N,N

≥ L‖x0 − x?‖22
(
√

2N + 1)2 = Ω(N−2).

While Drori’s approach to obtaining this lower bound is rather technical (a slightly
simplified and weaker version of this result can be found in (Drori and Taylor, 2021,
Corollary 5)), there are simpler approaches that allow us to show that the rate Ω(N−2)
(that is, neglecting the tight constants) cannot in general be beaten in black-box smooth
convex minimization. For one such example, we refer to (Nesterov, 2003, Theorem 2.1.6).

50 Nesterov Acceleration

In a closely related line of work, (Nemirovsky, 1991) established similar exact bounds in
the context of solving linear systems of equations and for minimizing convex quadratic
functions (see also Section 2.3.4). For convex quadratic problems whose Hessian has
bounded eigenvalues between 0 and L, these lower bounds are attained by the Chebyshev
(see Section 2) and by conjugate gradient methods (Nemirovsky, 1991; Nemirovsky, 1992).

Perhaps surprisingly, the conjugate gradient method also achieves the lower complexity
bound of smooth convex minimization provided by Theorem 4.7. Furthermore, the proof
follows essentially the same structure as that for the OGM. In particular, it relies on the
same potential function (see Appendix B.2).

4.3.3 Optimized Gradient Method: Summary

Before going further, we quickly summarize what we have learned from the optimized
gradient method. First of all, the optimized gradient method can be seen as a counterpart
of the Chebyshev method for minimizing quadratics, applied to smooth convex minimiza-
tion. It is an optimal method in the sense that it has the smallest possible worst-case
ratio f(yN)−f?

‖y0−x?‖2
2
over the class f ∈ F0,L among all black-box first-order methods, given

a fixed computational budget of N gradient evaluations. Furthermore, although this
method has a few drawbacks (we mention a few below), it can be seen as a template for
designing other accelerated methods using the same algorithmic and proof structures.
We extensively use variants of this template below. In other words, most variants of
accelerated gradient methods rely on the same two (or three) sequence structures, and on
similar potential functions. Such variants usually rely on slight variations in the choice of
the parameters used throughout the iterative process, typically involving less aggressive
step size strategies (i.e., smaller values for {hi,j} in (4.6)).

Second, the OGM is not a very practical method as such: it is fined-tuned for
unconstrained smooth convex minimization and does not readily extend to other situations,
such as situations involving constraints, for which (4.4) does not hold in general; see the
discussions in (Drori, 2018) and Remark A.1.

On the other hand, we see in what follows that it is relatively easy to design other
methods that follow the same template and achieve the same O(N−2) rate, while resolving
the issues of the OGM listed above. Such methods use slightly less aggressive step size
strategies, at the cost of being slightly suboptimal for (4.7), i.e., they have slightly worse
worst-case guarantees. In this vein, we start by discussing the original accelerated gradient
method, proposed by Nesterov (1983).

4.4 Nesterov’s Acceleration

Motivated by the format of the optimized gradient method, we detail a potential-based
proof for Nesterov’s method. We then quickly review the concept of estimate sequences
and show that they provide an interpretation of potential functions as increasingly good
models of the function to be minimized. Finally, we extend these results to strongly

4.4. Nesterov’s Acceleration 51

convex minimization.

4.4.1 Nesterov’s Method, from Potential Functions

In this section, we follow the algorithmic template provided by the optimized gradient
method. In this spirit, we start by discussing the first accelerated method in its simplest
form (Algorithm 11) as well as its potential function, originally proposed by Nesterov
(1983), but the presentation here is different.

Our goal is to derive the simplest algebraic proof for this scheme. We follow the
algorithmic template of the optimized gradient method (which is further motivated
in Section 4.6.1). Once a potential is chosen, the proofs are quite straightforward as
simple combinations of inequalities and basic algebra. Our choice of potential function is
not immediately obvious but allows for simple extensions afterwards. Other choices are
possible, for example, incorporating f(yk) as (in the OGM) or additional terms such as
‖∇f(xk)‖22. We pick a potential function similar to that used for gradient descent and
that of the optimized gradient method, which is written

φk , Ak(f(xk)− f?) + L

2 ‖zk − x?‖
2
2,

where one iteration of the algorithm has the following form, reminiscent of the OGM:

yk = xk + τk(zk − xk)
xk+1 = yk − αk∇f(yk)
zk+1 = zk − γk∇f(yk).

(4.13)

Our goal is to select algorithmic parameters {(τk, αk, γk)}k so as to greedily make Ak+1
as large as possible as a function of Ak since the convergence rate of the method is
controlled by the inverse of the growth rate of Ak, i.e., f(xN)− f? = O(A−1

N).
In practice, we can pick Ak+1 = Ak + 1

2(1 +
√

4Ak + 1) by choosing τk = 1−Ak/Ak+1,
αk = 1

L , and γk = (Ak+1−Ak)/L (see Algorithm 11), and the proof is then quite compact.

Algorithm 11 Nesterov’s method, form I
Input: An L-smooth convex function f and initial point x0.
1: Initialize z0 = x0 and A0 = 0.
2: for k = 0, . . . do
3: ak = 1

2(1 +
√

4Ak + 1)
4: Ak+1 = Ak + ak
5: yk = xk + (1− Ak

Ak+1
)(zk − xk)

6: xk+1 = yk − 1
L∇f(yk)

7: zk+1 = zk − Ak+1−Ak
L ∇f(yk)

8: end for
Output: Approximate solution xk+1.

52 Nesterov Acceleration

Before continuing to the proof of the potential inequality, we show that A−1
k = O(k−2).

Indeed, we have,

Ak = Ak−1 + 1 +
√

4Ak−1 + 1
2 ≥ Ak−1 + 1

2 +
√
Ak−1 ≥

(√
Ak−1 + 1

2

)2
≥ k2

4 ,
(4.14)

where the last inequality follows from a recursive application of the previous one, along
with A0 = 0.

Theorem 4.8. Let f be an L-smooth convex function, x? ∈ argminx f(x), and k ∈ N.
For any xk, zk ∈ Rd and Ak ≥ 0, the iterates of Algorithm 11 satisfy

Ak+1(f(xk+1)− f?) + L

2 ‖zk+1 − x?‖22 ≤ Ak(f(xk)− f?) + L

2 ‖zk − x?‖
2
2,

with Ak+1 = Ak + 1+
√

4Ak+1
2 .

Proof. The proof consists of a weighted sum of the following inequalities.

• Convexity of f between x? and yk with weight λ1 = Ak+1 −Ak:

f? ≥ f(yk) + 〈∇f(yk);x? − yk〉.

• Convexity of f between xk and yk with weight λ2 = Ak:

f(xk) ≥ f(yk) + 〈∇f(yk);xk − yk〉.

• Smoothness of f between yk and xk+1 (a.k.a., descent lemma) with weight λ3 =
Ak+1:

f(yk) + 〈∇f(yk);xk+1 − yk〉+ L

2 ‖xk+1 − yk‖22 ≥ f(xk+1).

We therefore arrive at the following valid inequality

0 ≥λ1[f(yk)− f? + 〈∇f(yk);x? − yk〉]
+ λ2[f(yk)− f(xk) + 〈∇f(yk);xk − yk〉]

+ λ3[f(xk+1)− f(yk)− 〈∇f(yk);xk+1 − yk〉 −
L

2 ‖xk+1 − yk‖22].

For the sake of simplicity, we do not substitute Ak+1 by its expression until the last
stage of the reformulation. Substituting yk, xk+1, and zk+1 by their expressions in (4.13)
along with τk = 1−Ak/Ak+1, αk = 1

L , and γk = Ak+1−Ak
L , basic algebra shows that the

previous inequality can be reorganized as

0 ≥Ak+1(f(xk+1)− f?) + L

2 ‖zk+1 − x?‖22

−Ak(f(xk)− f?)−
L

2 ‖zk − x?‖
2
2

+ Ak+1 − (Ak −Ak+1)2

2L ‖∇f(yk)‖22.

4.4. Nesterov’s Acceleration 53

The claim follows from selecting Ak+1 ≥ Ak such that Ak+1 − (Ak −Ak+1)2 = 0, thereby
reaching

Ak+1(f(xk+1)− f?) + L

2 ‖zk+1 − x?‖22 ≤ Ak(f(xk)− f?) + L

2 ‖zk − x?‖
2
2.

The final worst-case guarantee is obtained by using the same chaining argument as
in (4.5), combined with an upper bound on AN .

Corollary 4.9. Let f be an L-smooth convex function, and x? ∈ argminx f(x). For any
N ∈ N, the iterates of Algorithm 11 satisfy

f(xN)− f? ≤
2L‖x0 − x?‖22

N2 .

Proof. Following the argument of (4.5), we recursively use Theorem 4.8 with A0 = 0:

AN (f(xN)− f?) ≤ φN ≤ . . . ≤ φ0 = L

2 ‖x0 − x?‖22,

which yields

f(xN)− f? ≤
L‖x0 − x?‖22

2AN
≤ 2L‖x0 − x?‖22

N2 ,

where we used AN ≥ N2/4 from (4.14) to reach the last inequality.

Before moving on, we emphasize that the rate of O(N−2) matches that of lower
bounds (see, e.g., Theorem 4.7) up to absolute constants.

Finally, note that Nesterov’s method is often written in a slightly different format,
similar to that of Algorithm 10. The alternate formulation omits the third sequence zk
and is provided in Algorithm 12. It is preferred in many references on the topic due
to its simplicity. A third equivalent variant is provided in Algorithm 13; this variant
turns out to be useful when generalizing the method beyond Euclidean spaces. The
equivalence statements between Algorithm 11, Algorithm 12, and Algorithm 13 are
relatively simple and are provided in Appendix B.1.2. Many references tend to favor one
of these formulations, and we want to point out that they are equivalent in the base
problem setup of unconstrained smooth convex minimization. Although the expression
of the different formats in terms of the same external sequence {Ak}k does not always
correspond to their simplest forms (i.e., alternate parameterizations might be simpler,
particularly in the strongly convex case which follows), we proceed with this sequence to
avoid introducing too many variations on the same theme.

4.4.2 Estimate Sequence Interpretation

We now relate the potential function approach to estimate sequences. That is, we relate
acceleration to first-order methods maintaining a model of the function throughout
the iterative procedure. This approach was originally developed in (Nesterov, 2003,
Section 2.2), and it has since been used in numerous works to obtain accelerated first-
order methods in various settings (see discussions in Section 4.9). We present a slightly

54 Nesterov Acceleration

Algorithm 12 Nesterov’s method, form II
Input: An L-smooth convex function f and initial point x0.
1: Initialize y0 = x0 and A0 = 0.
2: for k = 0, . . . do
3: ak = 1

2(1 +
√

4Ak + 1)
4: Ak+1 = Ak + ak
5: xk+1 = yk − 1

L∇f(yk)
6: yk+1 = xk+1 + ak−1

ak+1
(xk+1 − xk)

7: end for
Output: Approximate solution xk+1.

Algorithm 13 Nesterov’s method, form III
Input: An L-smooth convex function f and initial point x0.
1: Initialize z0 = x0 and A0 = 0.
2: for k = 0, . . . do
3: ak = 1

2(1 +
√

4Ak + 1)
4: Ak+1 = Ak + ak
5: yk = xk + (1− Ak

Ak+1
)(zk − xk)

6: zk+1 = zk − Ak+1−Ak
L ∇f(yk)

7: xk+1 = Ak
Ak+1

xk + (1− Ak
Ak+1

)zk+1
8: end for

Output: Approximate solution xk+1.

modified version, related to those of (Baes, 2009; Wilson et al., 2021), which simplifies
our comparisons with the previous material.

Estimate Sequences

As we see below, the basic idea underlying estimate sequences is closely related to
that of potential functions, but it has explicit interpretations in terms of models of the
objective function f . More precisely a sequence of pairs {(Ak, ϕk(x))}k, with Ak ≥ 0 and
ϕk : Rd → R, is called an estimate sequence of a function f if
(i) for all k ≥ 0 and x ∈ Rd we have

ϕk(x)− f(x) ≤ A−1
k (ϕ0(x)− f(x)), (4.15)

(ii) Ak →∞ as k →∞.
If in addition, an estimate sequence satisfies
(iii) for all k ≥ 0, there exists some xk such that f(xk) ≤ ϕk(x?), then we can guarantee
that f(xk)− f? = O(A−1

k).
The purpose of estimate sequences is to start from an initial model ϕ0(x) satisfying

ϕ0(x) ≥ f? for all x ∈ Rd and then to design a sequence of convex models ϕk that

4.4. Nesterov’s Acceleration 55

are increasingly good approximations of f , in the sense of (4.15). We provide further
comments on conditions (i) and (iii), assuming for simplicity that {Ak} is monotonically
increasing (as is the case for all methods treated in this section).

• Regarding (i), for all x ∈ Rd, we have to design ϕk to be either (a) a lower bound
on the function (i.e., ϕk(x)− f(x) ≤ 0 for that x) or (b) an increasingly good upper
approximation of f(x) when 0 ≤ ϕk(x) − f(x) ≤ A−1

k (ϕ0(x) − f(x)) for that x.
That is, we require that the error |f(x) − ϕk(x)|, incurred when approximating
f(x) by ϕk(x), gets smaller for all x for which ϕk(x) is an upper bound on f(x).
To develop such models and the corresponding methods, three sequences of points
are commonly used: (a) minimizers of our models ϕk that correspond to iterates
zk of the corresponding method; (b) a sequence yk of points, whose first-order
information is used to update the model of the function; and (c) the iterates xk,
corresponding to the best possible f(xk) that we can form. (The iteratives often
do not correspond to the minimum of the model, ϕk, which is not necessarily an
upper bound on the function.)

• Regarding (iii), this condition ensures that the models ϕk remain upper bounds
on the optimal value f?. That is, it ensures that f? ≤ ϕk(x?) (since f? ≤ f(xk))
and hence that ϕk(x?) − f? ≥ 0. From previous bullet point, this ensures that
the modeling error of f? goes to 0 asymptotically as k increases. More formally,
conditions (ii) and (iii) allow us to construct proofs similar to potential functions
and to obtain convergence rates. That is, under (iii), we get that

f(xk)− f? ≤ ϕk(x?)− f(x?) ≤ A−1
k (ϕ0(x?)− f(x?)), (4.16)

and that therefore f(xk)− f? ≤ O(A−1
k). The convergence rate is thereby dictated

by the rate of A−1
k , which goes to 0 by (ii).

Now, the game consists of picking appropriate sequences {(Ak, ϕk)} that correspond
to simple algorithms. We thus translate our potential function results in terms of estimate
sequences.

Potential Functions as Estimate Sequences

One can observe that potential functions and estimate sequences are closely related. First,
in both cases, the convergence speed is dictated by that of a scalar sequence A−1

k . In fact,
there is one subtle but important difference between the two approaches: whereas ϕk(x)
should be an increasingly good approximation of f for all x in the context of estimate
sequences, potential functions require a model to be an increasingly good approximation
of only f?, which is less restrictive. Hence, estimate sequences are more general but
may not effectively handle situations in which the analysis actually requires having a
weaker model that holds only on f?, and not of f(x), for all x. We make this discussion
more concrete via three examples, namely gradient descent, Nesterov’s method, and the
optimized gradient method.

56 Nesterov Acceleration

• Gradient descent: the potential inequality from Theorem 4.2 actually holds for all
x, and not only x?, as the proof does not exploit the optimality of x?. That is, it is
proved that:

(Ak + 1)(f(xk+1)− f(x)) + L

2 ‖xk+1 − x‖22

≤ Ak(f(xk)− f(x)) + L

2 ‖xk − x‖
2
2

for all x ∈ Rd. Therefore, the pair {(Ak, ϕk(x))}k with

ϕk(x) = f(xk) + L

2Ak
‖xk − x‖22

and Ak = A0 + k (with A0 > 0) is an estimate sequence for gradient descent.

• Nesterov’s first method: the potential inequality from Theorem 4.8 also holds for
all x ∈ Rd, not only x?, as the proof does not exploit the optimality of x?. That is,
it is proved that:

Ak+1(f(xk+1)− f(x)) + L

2 ‖zk+1 − x‖22

≤ Ak(f(xk)− f(x)) + L

2 ‖zk − x‖
2
2

for all x ∈ Rd. Hence, the pair {(Ak, ϕk(x))}k with

ϕk(x) = f(xk) + L

2Ak
‖zk − x‖22

and Ak = Ak−1 + 1+
√

4Ak−1+1
2 (with A0 > 0) is an estimate sequence for Nesterov’s

method.

• Optimized gradient method: the potential inequality from Theorem 4.4 exploits
the fact that x? is an optimal point. Indeed, the proof relies on

f(x?) ≥ f(yk) + 〈∇f(yk);x? − yk〉+ 1
2L‖∇f(yk)‖22,

which is an instance of Equation (4.4) exploiting ∇f(x?) = 0. This does not mean
that there is no estimate sequence-type model of the function as the algorithm
proceeds, but the potential does not directly correspond to one. Alternatively, one
can interpret

ϕk(x) = f(yk)−
1

2L‖∇f(yk)‖22 + L

4θ2
k,N

‖zk+1 − x‖22

as an increasingly good model of f? (i.e., it is an increasingly good approximation
of f(x) for all x such that ∇f(x) = 0).
A similar conclusion holds for the conjugate gradient method (CG), from Ap-
pendix B.2. We are not aware of any estimate sequence that can be used to prove
that CG reaches the lower bound from Theorem 4.7.

These discussions can be extended to the strongly convex setting, which we now address.

4.5. Acceleration under Strong Convexity 57

4.5 Acceleration under Strong Convexity

Before designing faster methods that exploit strong convexity, we briefly describe the
benefits and limitations of this additional assumption. Roughly speaking, strong convexity
guarantees that the gradient gets larger further away from the optimal solution. One way
of looking at it is as follows: a function f is L-smooth and µ-strongly convex if and only
if there exists some (L− µ)-smooth convex function f̃ such that

f(x) = f̃(x) + µ

2 ‖x− x?‖
2
2,

where x? is an optimal point for both f and f̃ . Therefore, one iteration of gradient descent
can be described as follows:

xk+1 − x? = xk − x? − γ∇f(xk)
= xk − x? − γ(∇f̃(xk) + µ(xk − x?))
= (1− γµ)(xk − x?)− γ∇f̃(xk).

We see that for sufficiently small step sizes γ, there is an additional contraction effect
due to the factor (1− γµ), as compared to the effect that gradient descent has on smooth
convex functions such as f̃ . In what follows, we adapt our proofs to develop accelerated
methods in the strongly convex case. Because the smooth strongly convex functions are
sandwiched between two quadratic functions, these assumptions are of course much more
restrictive than smoothness alone.

4.5.1 Gradient Descent and Strong Convexity

As in the smooth convex case, the smooth strongly convex case can be studied through
potential functions. There are many ways to prove convergence rates for this setting,
but we only consider one that allows us to recover the µ = 0 case as its limit such that
the results are well-defined even in degenerate cases. The next proof is essentially the
same as that for the smooth convex case in Theorem 4.2, and the same inequalities are
used, with strong convexity instead of convexity. The potential is only slightly modified,
thereby allowing Ak to have a geometric growth rate:

φk , Ak(f(xk)− f?) + L+ µAk
2 ‖xk − x?‖22.

For notational convenience, we use q = µ
L to denote the inverse condition ratio. This

quantity plays a key role in the geometric convergence of first-order methods in the
presence of strong convexity.

Theorem 4.10. Let f be an L-smooth µ-strongly (possibly with µ = 0) convex function,
x? ∈ argminx f(x), and k ∈ N. For any Ak ≥ 0 and any xk, it holds that

Ak+1(f(xk+1)− f?) + L+ µAk+1
2 ‖xk+1 − x?‖22

≤ Ak(f(xk)− f?) + L+ µAk
2 ‖xk − x?‖22,

58 Nesterov Acceleration

with xk+1 = xk − 1
L∇f(xk), Ak+1 = (1 +Ak)/(1− q), and q = µ

L .

Proof. The proof consists of performing a weighted sum of the following inequalities.

• Strong convexity of f between xk and x?, with weight λ1 = Ak+1 −Ak:

0 ≥ f(xk)− f? + 〈∇f(xk);x? − xk〉+ µ

2 ‖x? − xk‖
2
2.

• Smoothness of f between xk and xk+1 with weight λ2 = Ak+1

0 ≥ f(xk+1)− f(xk)− 〈∇f(xk);xk+1 − xk〉 −
L

2 ‖xk − xk+1‖22.

This weighted sum yields a valid inequality:

0 ≥λ1[f(xk)− f? + 〈∇f(xk);x? − xk〉+ µ

2 ‖x? − xk‖
2
2]

+ λ2[f(xk+1)− f(xk)− 〈∇f(xk);xk+1 − xk〉 −
L

2 ‖xk − xk+1‖22].

Using xk+1 = xk − 1
L∇f(xk), this inequality can be rewritten exactly as

Ak+1(f(xk+1)− f?) + L+ µAk+1
2 ‖xk+1 − x?‖22

≤Ak(f(xk)− f?) + L+ µAk
2 ‖xk − x?‖22

− (1− q)Ak+1 − 1
2L ‖∇f(xk)‖22

+ ((1− q)Ak+1 −Ak − 1)〈∇f(xk);xk − x?〉.
The desired inequality follows from Ak+1 = (1 +Ak)/(1− q) and the sign of Ak, making
one of the last two terms nonpositive and the other equal to zero, thus reaching

Ak+1(f(xk+1)− f?) + L+ µAk+1
2 ‖xk+1 − x?‖22

≤ Ak(f(xk)− f?) + L+ µAk
2 ‖xk − x?‖22.

From this theorem, we observe that adding strong convexity to the problem allows
Ak to follow a geometric rate given by (1− q)−1 (where we again denote by q = µ

L the
inverse condition number). The corresponding iteration complexity of gradient descent
to find an approximate solution f(xk)− f? ≤ ε for smooth strongly convex minimization
is therefore O(Lµ log 1

ε). This rate is essentially tight, as can be verified on quadratic
functions (see, e.g., Section 2), and it follows from the following corollary whose result
can be translated to iteration complexity using the same arguments as in Corollary 2.2.

Corollary 4.11. Let f be an L-smooth µ-strongly convex function, and x? ∈ argminx f(x).
For any N ∈ N, the iterates of gradient descent with step size γ0 = γ1 = . . . = γN = 1

L

satisfy

f(xN)− f? ≤
µ‖x0 − x?‖22

2((1− q)−N − 1) ,

with the inverse condition number q = µ
L .

4.5. Acceleration under Strong Convexity 59

Proof. Following the reasoning of (4.5), we recursively use Theorem 4.2 starting with
A0 = 0; that is,

AN (f(xN)− f?) ≤ φN ≤ . . . ≤ φ0 = L

2 ‖x0 − x?‖22,

and we notice that the recurrence equation Ak+1 = (Ak + 1)/(1 − q) has the solution
Ak = ((1 − q)−k − 1)/q. The final bound is obtained by using f(xN) − f? ≤ L‖x0−x?‖2

2
2AN

again.

Note that as µ→ 0, the result of Corollary 4.11 tends to that of Corollary 4.3.

Remark 4.1 (Lower bounds). As in the smooth convex case, one can derive lower com-
plexity bounds for smooth strongly convex optimization. Using the lower bounds from
smooth strongly convex quadratic minimization (for which Chebyshev’s methods have
optimal iteration complexity), one can conclude that no black-box first-order method
can behave better than f(xk)− f? = O(ρk) with ρ = (1−√q)2

(1+√q)2 (see Section 2). In other
words, lower complexity bounds from the quadratic optimization setting have the form
f(xk)− f? = Ω(ρk). We refer the reader to Nesterov (2003) and Nemirovsky (1992) for
more details.

For smooth strongly convex problems beyond quadratics, this lower bound can
be improved to f(xk) − f? = Ω((1 − √q)2k) as provided in (Drori and Taylor, 2021,
Corollary 4). In this context, we see that Nesterov’s acceleration satisfies

f(xk)− f? = O((1−√q)k).

That is, it has an O(
√

L
µ log 1

ε) iteration complexity (using similar simplifications as those
of Corollary 2.2), reaching the lower complexity bound up to a constant factor. As for the
optimized gradient method provided in Section 4.3, an optimal method for the smooth
strongly convex case is detailed in Section 4.6.1, and it can be shown to match exactly
the corresponding worst-case lower complexity bound.

4.5.2 Acceleration for Smooth Strongly Convex Objectives

To adapt our proofs of convergence of accelerated methods to the strongly convex case,
we need to make a small adjustment to the shape of the previous accelerated method

yk = xk + τk(zk − xk)
xk+1 = yk − αk∇f(yk)
zk+1 = (1− µ

Lδk)zk + µ
Lδkyk − γk∇f(yk).

(4.17)

As discussed below, there is an optimized gradient method for smooth strongly convex
minimization, similar to OGM for the smooth convex setting (see Section 4.3), with
this structure (details in Section 4.6.1). Following this scheme, Nesterov’s method for
strongly convex problems is presented in Algorithm 14. As in the smooth convex case,

60 Nesterov Acceleration

Algorithm 14 Nesterov’s method, form I
Input: An L-smooth µ-strongly (possibly with µ = 0) convex function f and initial x0.
1: Initialize z0 = x0 and A0 = 0; q = µ/L (inverse condition ratio).
2: for k = 0, . . . do
3: Ak+1 = 2Ak+1+

√
4Ak+4qA2

k
+1

2(1−q) {Ak+1 solution to (Ak −Ak+1)2−Ak+1− qA2
k+1 = 0}

4: Set τk = (Ak+1−Ak)(1+qAk)
Ak+1+2qAkAk+1−qA2

k
and δk = Ak+1−Ak

1+qAk+1

5: yk = xk + τk(zk − xk)
6: xk+1 = yk − 1

L∇f(yk)
7: zk+1 = (1− qδk)zk + qδkyk − δk

L∇f(yk)
8: end for

Output: Approximate solution xk+1.

we detail several of its convenient reformulations in Algorithm 28 and Algorithm 29. The
corresponding equivalences are established in Appendix B.1.3.

Regarding the potential, we make the same adjustment as for gradient descent,
arriving to the following theorem.

Theorem 4.12. Let f be an L-smooth µ-strongly (possibly with µ = 0) convex function,
x? ∈ argminx f(x), and k ∈ N. For all xk, zk ∈ Rd and Ak ≥ 0, the iterates of Algorithm 14
satisfy

Ak+1(f(xk+1)− f?) + L+ µAk+1
2 ‖zk+1 − x?‖22

≤ Ak(f(xk)− f?) + L+ µAk
2 ‖zk − x?‖22,

with Ak+1 = 2Ak+1+
√

4Ak+4qA2
k
+1

2(1−q) and q = µ
L .

Proof. The proof consists of a weighted sum of the following inequalities.

• Strong convexity between x? and yk with weight λ1 = Ak+1 −Ak:

f? ≥ f(yk) + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2.

• Convexity between xk and yk with weight λ2 = Ak:

f(xk) ≥ f(yk) + 〈∇f(yk);xk − yk〉.

• Smoothness between yk and xk+1 (descent lemma) with weight λ3 = Ak+1

f(yk) + 〈∇f(yk);xk+1 − yk〉+ L

2 ‖xk+1 − yk‖22 ≥ f(xk+1).

4.5. Acceleration under Strong Convexity 61

We therefore arrive at the following valid inequality:

0 ≥λ1[f(yk)− f? + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2]

+ λ2[f(yk)− f(xk) + 〈∇f(yk);xk − yk〉]

+ λ3[f(xk+1)− f(yk)− 〈∇f(yk);xk+1 − yk〉 −
L

2 ‖xk+1 − yk‖22].

For the sake of simplicity, we do not substitute Ak+1 by its expression until the last stage
of the reformulation. After substituting xk+1, zk+1 by their expressions in (4.17) along
with τk = (Ak+1−Ak)(1+qAk)

Ak+1+2qAkAk+1−qA2
k
, αk = 1

L , δk = Ak+1−Ak
1+qAk+1

, and γk = δk
L , basic algebra shows

that the previous inequality can be reorganized as

Ak+1(f(xk+1)− f?) + L+ µAk+1
2 ‖zk+1 − x?‖22

≤Ak(f(xk)− f?) + L+ µAk
2 ‖zk − x?‖22

+
(Ak −Ak+1)2 −Ak+1 − qA2

k+1
1 + qAk+1

1
2L‖∇f(yk)‖22

−A2
k

(Ak+1 −Ak)(1 + qAk)(1 + qAk+1)
(Ak+1 + 2qAkAk+1 − qA2

k)2
µ

2 ‖xk − zk‖
2
2.

The desired statement follows from selecting Ak+1 ≥ Ak ≥ 0 such that

(Ak −Ak+1)2 −Ak+1 − qA2
k+1 = 0,

thus yielding

Ak+1(f(xk+1)− f?) + L+ µAk+1
2 ‖zk+1 − x?‖22

≤Ak(f(xk)− f?) + L+ µAk
2 ‖zk − x?‖22.

The final worst-case guarantee is obtained by using the same reasoning as before,
together with a simple bound on Ak+1:

Ak+1 =
2Ak + 1 +

√
4Ak + 4qA2

k + 1
2 (1− q)

≥
2Ak +

√(
2Ak
√
q
)2

2 (1− q) = Ak
1−√q ,

(4.18)

which means f(xk)− f? = O((1−√q)k) when µ > 0, or alternatively that O
(√

L
µ log 1

ε

)
is the iteration complexity of obtaining an approximate solution f(xN)− f? ≤ ε (using
similar simplifications as those of Corollary 2.2). The following corollary summarizes our
result for Nesterov’s method.

62 Nesterov Acceleration

Corollary 4.13. Let f be an L-smooth µ-strongly (possibly with µ = 0) convex function
and x? ∈ argminx f(x). For all N ∈ N, N ≥ 1, the iterates of Algorithm 14 satisfy

f(xN)− f? ≤ min
{ 2
N2 , (1−

√
q)N

}
L‖x0 − x?‖22,

with q = µ
L .

Proof. Following the argument of (4.5), we recursively use Theorem 4.12 with A0 = 0,
together with the bounds on AN for the smooth convex case (4.14) and for the smooth
strongly convex one (4.18). (Note that Ak+1 is an increasing function of µ, and hence
the bound for the smooth case remains valid in the smooth strongly convex one.) We
have A1 = 1

1−q = 1
(1−√q)(1+√q) ≥

1
2(1−√q)−1, thus reaching AN ≥ 1

2(1−√q)−N .

Remark 4.2. Before moving to the next section, we mention that another direct conse-
quence of the potential inequality above (Theorem 4.12) is that zk may also serve as an
approximate solution to x? when µ > 0. Indeed, by using the inequality

L+ µAN
2 ‖zN − x?‖22 ≤ φN ≤ . . . ≤ φ0 = L

2 ‖x0 − x?‖22,

it follows that

‖zN − x?‖22 ≤
1

1 + qAN
‖x0 − x?‖22 ≤

2(1−√q)N
2(1−√q)N + q

‖x0 − x?‖22,

and hence that ‖zN − x?‖22 = O((1−√q)N). Therefore it also follows that

f(zN)− f? ≤
L

2 ‖zN − x?‖
2
2 = O((1−√q)N).

In addition, since yN is a convex combination of xN and zN , the same conclusion holds
for ‖yN − x?‖22 and f(yN) − f?. Similar observations also apply to other variants of
accelerated methods when µ > 0.

4.5.3 A Simplified Stationary Method with Constant Momentum

Important simplifications are often made to the Nesterov’s method in the strongly convex
case where µ > 0. Several approaches produce the same method, known as the “constant
momentum” version of Nesterov’s accelerated gradient. We derive this version by observing
that the asymptotic (or stationary) behavior of Algorithm 14 can be characterized
explicitly. In particular, when k →∞, it is clear that Ak →∞ as well. We can thus take
the limits of all parameters as Ak → ∞, to obtain a corresponding “limit/stationary
method.” This is similar in spirit to the result showing that Polyak’s heavy-ball method
is the asymptotic version of Chebyshev’s method, discussed in Section 2.3.3. First, the
convergence rate is obtained as

lim
Ak→∞

Ak+1
Ak

= (1−√q)−1 .

4.5. Acceleration under Strong Convexity 63

By taking the limits of all the algorithmic parameters, that is,

lim
Ak→∞

τk =
√
q

1 +√q , lim
Ak→∞

δk = 1
√
q
,

we obtain Algorithm 15 and its equivalent, probably most well-known, second form,
provided as Algorithm 16.

Algorithm 15 Nesterov’s method, form I, constant momentum
Input: L-smooth µ-strongly convex function f and initial point x0.
1: Initialize z0 = x0 and A0 > 0; q = µ/L (inverse condition ratio).
2: for k = 0, . . . do
3: Ak+1 = Ak

1−√q{Only for the proof/relation to previous methods.}
4: yk = xk +

√
q

1+√q (zk − xk)
5: xk+1 = yk − 1

L∇f(yk)
6: zk+1 =

(
1−√q

)
zk +√q

(
yk − 1

µ∇f(yk)
)

7: end for
Output: Approximate solutions (yk, xk+1, zk+1).

Algorithm 16 Nesterov’s method, form II, constant momentum
Input: L-smooth µ-strongly convex function f and initial point x0.
1: Initialize y0 = x0 and A0 > 0; q = µ/L (inverse condition ratio).
2: for k = 0, . . . do
3: Ak+1 = Ak

1−√q{Only for the proof/relation to previous methods.}
4: xk+1 = yk − 1

L∇f(yk)
5: yk+1 = xk+1 + 1−√q

1+√q (xk+1 − xk)
6: end for

Output: Approximate solutions (yk, xk+1).

From a worst-case analysis perspective, these simplifications correspond to using a
Lyapunov function obtained by dividing the potential function of Theorem 4.12 by Ak
and then taking the limit of the inequality:

ρ−1
(
f(xk+1)− f? + µ

2 ‖zk+1 − x?‖22
)
≤ f(xk)− f? + µ

2 ‖zk − x?‖
2
2,

with ρ = (1−√q).

Theorem 4.14. Let f be an L-smooth µ-strongly convex function, x? = argminx f(x)
and k ∈ N. For any xk, zk ∈ Rd, the iterates of Algorithm 15 (or equivalently those of
Algorithm 16) satisfy

ρ−1
(
f(xk+1)− f? + µ

2 ‖zk+1 − x?‖22
)
≤ f(xk)− f? + µ

2 ‖zk − x?‖
2
2.

64 Nesterov Acceleration

Proof. Let Ak > 0 and Ak+1 = Ak/(1−
√
q). The proof is essentially the same as that of

as Theorem 4.12. That is, the weights used in this proof are those used in Theorem 4.12
divided by Ak, leading to a slight variation in the reformulation of the weighted sum,
and the following valid inequality:

0 ≥λ1[f(yk)− f? + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2]

+ λ2[f(yk)− f(xk) + 〈∇f(yk);xk − yk〉]

+ λ3[f(xk+1)− f(yk)− 〈∇f(yk);xk+1 − yk〉 −
L

2 ‖xk+1 − yk‖22],

with weights

λ1 =Ak+1 −Ak
Ak

=
√
q

1−√q ,

λ2 =Ak
Ak

= 1, and

λ3 =Ak+1
Ak

= (1−√q)−1.

By substituting
yk = xk +

√
q

1 +√q (zk − xk)

xk+1 = yk −
1
L
∇f(yk)

zk+1 = (1−√q) zk +√q
(
yk −

1
µ
∇f(yk)

)
,

we arrive at the following valid inequality:

ρ−1
(
f(xk+1)− f? + µ

2 ‖zk+1 − x?‖22
)

≤ f(xk)− f? + µ

2 ‖zk − x?‖
2
2 −

√
q

(1 +√q)2
µ

2 ‖xk − zk‖
2
2.

We reach the desired statement from the last term being nonpositive:

ρ−1
(
f(xk+1)− f? + µ

2 ‖zk+1 − x?‖22
)
≤ f(xk)− f? + µ

2 ‖zk − x?‖
2
2.

Corollary 4.15. Let f be an L-smooth µ-strongly convex function and x? ∈ argminx f(x).
For all N ∈ N, N ≥ 1, the iterates of Algorithm 15 (or equivalently of Algorithm 16)
satisfy

f(xN)− f? ≤ (1−√q)N
(
f(x0)− f? + µ

2 ‖x0 − x?‖22
)
,

with q = µ
L .

Proof. The desired result directly follows from Theorem 4.14 with

φk , ρ−k
(
f(xk)− f? + µ

2 ‖zk − x?‖
2
2

)
,

ρ = 1−√q, z0 = x0, and ρ−N (f(xN)− f?) ≤ φN .

4.6. Recent Variants of Accelerated Methods 65

Remark 4.3. In view of Section 4.4.2, one can also find estimate sequence interpretations
of Algorithms 14 and 15 from their respective potential functions.

Remark 4.4. A few works on accelerated methods focus on understanding this particular
instance of Nesterov’s method. Our analysis here is largely inspired by that of Nesterov
(2003), but such potentials can be obtained in different ways, see, for example (Wilson
et al., 2021; Shi et al., 2021; Bansal and Gupta, 2019).

4.6 Recent Variants of Accelerated Methods

In this section, we first push the reasoning in terms of potential functions to its limit. We
present the information-theoretic exact method (Taylor and Drori, 2021), which generalizes
the optimized gradient descent in the strongly convex case. Similar to Nesterov’s method
with constant momentum, the information-theoretic exact method has a limit case that
is known as the triple momentum method (Van Scoy et al., 2017). We then discuss a
more geometric variant, known as geometric descent (Bubeck et al., 2015) or quadratic
averaging (Drusvyatskiy et al., 2018).

4.6.1 An Optimal Method for Strongly Convex Minimization

It turns out that there also exist optimal gradient methods for smooth strongly convex
minimization that are similar to the optimized gradient method for smooth convex
minimization. Such methods can be obtained by solving a minimax problem similar
to (4.7) with different objectives.

The following scheme is optimal for the criterion ‖zN−x?‖
2
2

‖x0−x?‖2
2
, reaching the exact worst-

case lower complexity bound for this criterion, as discussed below. In addition, this
method reduces to the OGM (see Section 4.3) when µ = 0 by using the correspondence
Ak+1 = 4θ2

k,N (for k < N). Therefore, this method is doubly optimal, i.e., optimal
according to two criteria, in the sense that it also achieves the lower complexity bound
for f(yN)−f?

‖x0−x?‖2
2
when µ = 0, using the last iteration adjustment from Lemma 4.5.

The following analysis is reminiscent of Nesterov’s method in Algorithm 14 but
also of the optimized gradient method and its proof (see Theorem 4.4). That is, the
known potential function for the information-theoretic exact method (ITEM) relies
on inequality (4.4), not only for its proof but also simply to simply show that it is
nonnegative, which follows from instantiating (4.4) at y = x?. The following analyses can
be found almost verbatim in (Taylor and Drori, 2021). The main proof of this section is
particularly algebraic, but it can be reasonably skipped as it follows from similar ideas
found in previous developments.

Theorem 4.16. Let f be an L-smooth µ-strongly (possibly with µ = 0) convex function,
x? ∈ argminx f(x) and k ∈ N. For all yk−1, zk ∈ Rd and Ak ≥ 0, the iterates of
Algorithm 17 satisfy

φk+1 ≤ φk,

66 Nesterov Acceleration

Algorithm 17 Information-theoretic exact method (ITEM)
Input: L-smooth µ-strongly (possibly with µ = 0) convex function f and initial x0.
1: Initialize z0 = x0 and A0 = 0; q = µ/L (inverse condition ratio).
2: for k = 0, . . . do

3: Ak+1 = (1+q)Ak+2
(
1+
√

(1+Ak)(1+qAk)
)

(1−q)2

4: Set τk = 1− Ak
(1−q)Ak+1

, and δk = 1
2

(1−q)2Ak+1−(1+q)Ak
1+q+qAk

5: yk = xk + τk(zk − xk)
6: xk+1 = yk − 1

L∇f(yk)
7: zk+1 = (1− qδk)zk + qδkyk − δk

L∇f(yk)
8: end for

Output: Approximate solutions (yk, xk+1, zk+1).

with

φk ,Ak

[
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

− µ

2(1− q)‖yk−1 − 1
L∇f(yk−1)− x?‖22

]
+ L+ µAk

1− q ‖zk − x?‖
2
2

and Ak+1 = (1+q)Ak+2
(
1+
√

(1+Ak)(1+qAk)
)

(1−q)2 .

Proof. We first perform a weighted sum of two inequalities from Theorem 4.4.

• Smoothness and strong convexity between yk−1 and yk with weight λ1 = Ak:

f(yk−1) ≥f(yk) + 〈∇f(yk); yk−1 − yk〉

+ 1
2L‖∇f(yk)−∇f(yk−1)‖22

+ µ

2(1− q)‖yk − yk−1 − 1
L(∇f(yk)−∇f(yk−1))‖22.

• Smoothness and strong convexity of f between x? and yk with weight λ2 =
Ak+1 −Ak:

f? ≥f(yk) + 〈∇f(yk);x? − yk〉+ 1
2L‖∇f(yk)‖22

+ µ

2(1− q)‖yk − x? −
1
L∇f(yk)‖22.

By summing up and reorganizing these two inequalities (without substituting Ak+1 by

4.6. Recent Variants of Accelerated Methods 67

its expression, for simplicity), we arrive at the following valid inequality:

0 ≥ λ1

[
f(yk)− f(yk−1) + 〈∇f(yk); yk−1 − yk〉

+ 1
2L‖∇f(yk)−∇f(yk−1)‖22

+ µ

2(1− q)‖yk − yk−1 − 1
L(∇f(yk)−∇f(yk−1))‖22

]
+λ2

[
f(yk)− f? + 〈∇f(yk);x? − yk〉+ 1

2L‖∇f(yk)‖22

+ µ

2(1− q)‖yk − x? −
1
L∇f(yk)‖22

]
.

By substituting the expressions of yk and zk+1 with

yk = (1− τk)
(
yk−1 − 1

L∇f(yk−1)
)

+ τkzk

zk+1 = (1− qδk)zk + qδkyk − δk
L∇f(yk)

(noting that this substitution is valid even for k = 0 since A0 = 0 in that case and hence,
τ0 = 1 and y0 = z0), the previous inequality can be reformulated exactly as

φk+1 ≤φk −
LK1
1− qP (Ak+1)‖zk − x?‖22

+ K2
4L(1− q)P (Ak+1)

× ‖(1− q)Ak+1∇f(yk)− µAk(xk − x?) +K3µ(zk − x?)‖22,

with the three parameters (which are well-defined given that 0 ≤ µ < L and Ak, Ak+1 ≥ 0)

K1 = q2

(1 + q)2 + (1− q)2qAk+1

K2 = (1 + q)2 + (1− q)2qAk+1

(1− q)2 (1 + q + qAk)2A2
k+1

K3 = (1 + q)(1 + q)Ak − (1− q)(2 + qAk)Ak+1
(1 + q)2 + (1− q)2qAk+1

,

as well as
P (Ak+1) = (Ak − (1− q)Ak+1)2 − 4Ak+1(1 + qAk).

To obtain the desired inequality, we select Ak+1 such that Ak+1 ≥ Ak and P (Ak+1) = 0,
thereby demonstrating the claim φk+1 ≤ φk and the choice of Ak+1.

The final bound for this method is obtained after the usual growth analysis of the
sequence Ak, as follows. When µ = 0, we have

Ak+1 = 2 +Ak + 2
√

1 +Ak ≥ 2 +Ak + 2
√
Ak ≥ (1 +

√
Ak)2,

68 Nesterov Acceleration

reaching
√
Ak+1 ≥ 1 +

√
Ak and hence

√
Ak ≥ k and Ak ≥ k2. When µ > 0, we can use

an alternate bound:

Ak+1 =
(1 + q)Ak + 2

(
1 +

√
(1 +Ak)(1 + qAk)

)
(1− q)2

≥
(1 + q)Ak + 2

√
qA2

k

(1− q)2 = Ak
(1−√q)2 ,

therefore achieving similar bounds as before. In this case, we only emphasize the conver-
gence result for ‖zN − x?‖ since it corresponds to the lower complexity bound for smooth
strongly convex minimization (provided below).

Corollary 4.17. Let f ∈ Fµ,L, and denote q = µ/L. For any x0 = z0 ∈ Rd and N ∈ N
with N ≥ 1, the iterates of Algorithm 17 satisfy

‖zN − x?‖22 ≤
1

1 + qAN
‖z0 − x?‖22 ≤

(1−√q)2N

(1−√q)2N + q
‖z0 − x?‖22.

Proof. From Theorem 4.16, we get

φN ≤ φN−1 ≤ . . . ≤ φ0 = L

1− q‖z0 − x?‖22.

From (4.4), we have that φN ≥ L+ANµ
1−q ‖zN − x?‖

2
2. It remains to use the bounds on AN .

That is, by using A1 = 4
(1−q)2 = 4

(1+√q)2(1−√q)2 ≥ (1−√q)−2, we have AN ≥ (1−√q)−2N ,

which concludes the proof.

Before concluding, we mention that the algorithm is non-improvable when minimizing
large-scale smooth strongly convex functions in the following sense.

Theorem 4.18. (Drori and Taylor, 2021, Corollary 4) Let 0 ≤ µ < L < ∞, d,N ∈ N
with d ≥ 2N + 1. For any black-box first-order method that performs at most N calls
to the first-order oracle (f(·),∇f(·)), there exists a function f ∈ Fµ,L(Rd) and x0 ∈ Rd

such that
‖xN − x?‖22 ≥

1
1 + qAN

‖x0 − x?‖22,

where x? ∈ argminx f(x), xN is the output of the method under consideration, x0 is its
input, and AN is defined as in Algorithm 17.

Remark 4.5. Just as for the optimized gradient method from Section 4.3, the ITEM
might serve as a template for the design of other accelerated schemes. However, it has
the same caveats as the optimized gradient method, which are also similar to those of the
triple momentum method, presented in the next section. As emphasized in Section 4.3.3,
it is unclear how to generalize the ITEM to broader classes of problems, e.g., problems
involving constraints.

4.6. Recent Variants of Accelerated Methods 69

4.6.2 The Triple Momentum Method

The triple momentum method (TMM) is due to Van Scoy et al. (2017) and is reminiscent
of Nesterov’s method with constant momentum, provided as Algorithm 15. It corresponds
to the asymptotic behavior of the information-theoretic exact method, just as Nesterov’s
accelerated method with constant momentum is the limit case of Nesterov’s method (see
Section 4.5.3) and as Polyak’s heavy-ball is the limit case of Chebyshev’s method (see
Section 2.3.3). Indeed, considering Algorithm 17, one can explicitly compute

lim
Ak→∞

Ak+1
Ak

= (1−√q)−2

as well as
lim

Ak→∞
τk = 1−

1−√q
1 +√q , lim

Ak→∞
δk = 1

√
q
.

Algorithm 18 Triple momentum method (TMM)
Input: L-smooth µ-strongly convex function f and initial point x0.
1: Initialize y−1 = z0 = x0; q = µ/L (inverse condition ratio).
2: for k = 0, . . . do
3: Ak+1 = Ak

(1−√q)2 {Only for the proof/relation to previous methods.}
4: yk = 1−√q

1+√q

(
yk−1 − 1

L∇f(yk−1)
)

+
(
1− 1−√q

1+√q

)
zk

5: zk+1 = √q
(
yk − 1

µ∇f(yk)
)

+
(
1−√q

)
zk

6: end for
Output: Approximate solutions (yk, zk+1).

As for the information-theoretic exact method, the known potential function for the
triple momentum method relies on inequality (4.4), not only for its proof but to show
that it is nonnegative, which follows from instantiating (4.4) at y = x?.

Theorem 4.19. Let f be an L-smooth µ-strongly convex function, x? = argminx f(x),
and k ∈ N. For any xk, zk ∈ Rd, the iterates of Algorithm 18 satisfy

f(yk)− f? −
1

2L‖∇f(yk)‖22 −
µ

2(1− q)‖yk − x? −
1
L∇f(yk)‖22

+ µ

1− q‖zk+1 − x?‖22

≤ρ2
(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

− µ

2(1− q)‖yk−1 − x? − 1
L∇f(yk−1)‖22 + µ

1− q‖zk − x?‖
2
2

)
,

with ρ = 1−√q.

70 Nesterov Acceleration

Proof. For simplicity, we consider Algorithm 18 in the following form, parameterized
by ρ

yk = ρ

2− ρ
(
yk−1 − 1

L∇f(yk−1)
)

+
(

1− ρ

2− ρ

)
zk

zk+1 = (1− ρ)
(
yk − 1

µ∇f(yk)
)

+ ρzk.

We combine the following two inequalities.

• Smoothness and strong convexity between yk−1 and yk with weight λ1 = ρ2:

f(yk−1) ≥f(yk) + 〈∇f(yk); yk−1 − yk〉

+ 1
2L‖∇f(yk)−∇f(yk−1)‖22

+ µ

2(1− q)‖yk − yk−1 − 1
L(∇f(yk)−∇f(yk−1))‖22.

• Smoothness and strong convexity between x? and yk with weight λ2 = 1− ρ2:

f? ≥f(yk) + 〈∇f(yk);x? − yk〉+ 1
2L‖∇f(yk)‖22

+ µ

2(1− q)‖yk − x? −
1
L∇f(yk)‖22,

After some algebra, the weighted sum can be reformulated exactly as follows (it is simpler
not to use the expression of ρ to verify this):

f(yk)− f? −
1

2L‖∇f(yk)‖22 −
µ

2(1− q)‖yk − x? −
1
L∇f(yk)‖22

+ µ

1− q‖zk+1 − x?‖22

≤ρ2
(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

− µ

2(1− q)‖yk−1 − x? − 1
L∇f(yk−1)‖22 + µ

1− q‖zk − x?‖
2
2

)
− q − (ρ− 1)2

(ρ− 2) (1− q)
× 〈∇f(yk); ρ(yk−1 − x?)− 2(ρ− 1)(zk − x?)− ρ

L∇f(yk−1)〉

− q − (ρ− 1)2

(1− q)µ ‖∇f(yk)‖22.

Using the expression ρ = 1−√q, the last two terms cancel, and we arrive at the desired

4.6. Recent Variants of Accelerated Methods 71

result:

f(yk)− f? −
1

2L‖∇f(yk)‖22 −
µ

2(1− q)‖yk − x? −
1
L∇f(yk)‖22

+ µ

1− q‖zk+1 − x?‖22

≤ρ2
(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

− µ

2(1− q)‖yk−1 − x? − 1
L∇f(yk−1)‖22 + µ

1− q‖zk − x?‖
2
2

)
.

Remark 4.6. The triple momentum method was proposed in (Van Scoy et al., 2017),
heavily relying on the control-theoretic framework developed by (Lessard et al., 2016)
(which is discussed in Appendix C). It was further studied in Cyrus et al. (2018) from
a robust control perspective and by Zhou et al. (2020) as an accelerated method for
a different objective. The triple momentum method can also be obtained as a time-
independent optimized gradient method (Lessard and Seiler, 2020). Of course, all of the
drawbacks of the OGM and ITEM also apply to the triple momentum method, so the
same questions related to generalizations of this scheme remain open. Furthermore, this
method is defined only for µ > 0, like Nesterov’s method with constant momentum.

4.6.3 Quadratic Averaging and Geometric Descent

Accelerated methods tailored for the strongly convex setting, such as Algorithms 15
and 18, make use of two kinds of step sizes to update the different sequences. First, they
perform small gradient steps with the step size 1/L. Such steps correspond to minimizing
quadratic upper bounds (4.2). Second, they use so-called large steps 1/µ, which correspond
to minimizing quadratic lower bounds (4.3). This algorithmic structure is provided with
an interpretation which was further exploited by geometric descent (Bubeck et al., 2015)
and quadratic averaging (Drusvyatskiy et al., 2018). These two methods produce the same
sequences of iterates (see (Drusvyatskiy et al., 2018, Theorem 4.5)), and we therefore
take the stand of presenting them through the quadratic averaging viewpoint, which
relates more directly to previous sections.

Drusvyatskiy et al. (2018) propose a method based on quadratic averaging. It is
similar in shape to Algorithm 15 except that the last sequence zk is explicitly computed
as the minimum of a quadratic lower bound on the function. (The coefficients arising
in the computation of zk are dynamically selected to maximize this lower bound). To
construct the new lower bound at iteration k, the algorithm combines the lower bound
constructed at iteration k − 1, whose minimum is achieved at zk, with a new lower
bound constructed using the strong convexity assumption along with the first-order
information of the current iterate (more precisely this second lower bound on f(x) is
f(yk) + 〈∇f(yk), x− yk〉+ µ

2‖x− yk‖
2
2), whose minimum is yk − 1

µ∇f(yk). Because of the
specific shape of these two lower bounds, their convex combinations has a minimum that
is the convex combination of their respective minima, with the same weights, thereby

72 Nesterov Acceleration

motivating the update rule zk = λ(yk− 1
µ∇f(yk)) + (1−λ)zk−1, with dynamically chosen

λ (to maximize the minimum value of the new under-approximation).
Alternatively, the sequence zk can be interpreted in terms of a localization method

for tracking x?, using intersections of balls. In this case, the sequence zk corresponds
to the centers of the balls containing x?. This alternate viewpoint is referred to as
geometric descent (Bubeck et al., 2015), and the λ are chosen to minimize the radius of
the ball, centered at zk = λ(yk − 1

µ∇f(yk)) + (1− λ)zk−1 while ensuring that the new
ball contains x?.

Geometric descent is detailed in (Bubeck et al., 2015) and (Bubeck, 2015, Section
3.6.3). It has been extended to handle constraints (Chen et al., 2017) and has been
studied using the same Lyapunov function as that used in Theorem 4.14 (Karimi and
Vavasis, 2017).

4.7 Practical Extensions

The goal of this section is to detail a few of the many extensions of Nesterov’s accelerated
methods. We see below that additional elements can be incorporated into the accelerated
methods while maintaining the same proof structures. That is, we perform weighted
sums involving the same inequalities that we used for the smooth (possibly strongly)
convex functions and only introduce a few additional inequalities to account for the new
elements.

We also seek to provide intuition, along with bibliographical pointers for going further.
The following scenarios are particularly important in practice.

Constraints. In the presence of constraints or nonsmooth functions, a common approach
is to resort to (proximal) splitting techniques. This idea is not recent; see, e.g., (Douglas
and Rachford, 1956; Glowinski and Marroco, 1975; Lions and Mercier, 1979). How-
ever, it remains highly relevant in signal processing, computer vision, and statistical
learning (Peyré, 2011; Parikh and Boyd, 2014; Chambolle and Pock, 2016; Fessler, 2020).

Adaptation. Problem constants, such as smoothness and strong convexity parameters,
are generally unknown. Furthermore, their local values tend to be much more favorable
than their, typically conservative, global values. In general, smoothness constants are
estimated on the fly using backtracking line-search strategies; see, e.g. (Goldstein, 1962;
Armijo, 1966; Nesterov, 1983). Strong convexity constants, or the more general Hölderian
error bounds (see Section 6), on the other hand, are more difficult to estimate, and
restart schemes are often used to adapt to these additional regularity properties; see,
e.g. (Nesterov, 2013; Becker et al., 2011; O’Donoghue and Candes, 2015; Roulet and
d’Aspremont, 2017). Such schemes are the workhorse of Section 6.

Non-Euclidean settings. Although we only briefly mention this topic, accounting for
the geometry of the problem at hand is generally key to obtaining good empirical per-

4.7. Practical Extensions 73

formance. In particular, optimization problems can often be formulated more naturally
in a non-Euclidean space, with non-Euclidean norms producing better implicit models
for the function. A popular method in this setting is commonly known as mirror de-
scent (Nemirovsky and Yudin, 1983a)—see also (Ben-Tal and Nemirovsky, 2001; Juditsky
and Nemirovsky, 2011a)—which we do not to detail at length here. Good surveys are
provided by Beck and Teboulle (2003) and Bubeck (2015). However, we do describe an
accelerated method in this setting in Section 4.7.4.

Numerical stability and monotone accelerated methods. Gradient descent guaran-
tees the iterates to be monotonically good approximations of an optimal solution (i.e.,
f(xk+1) ≤ f(xk) for all k). This desirable property is generally not true for accelerated
methods. Although the worst-case guarantees on f(xk)− f? are indeed monotonically
decreasing functions of the iteration counter (such methods are sometimes referred to as
quasi-monotone methods (Nesterov and Shikhman, 2015)), accelerated methods are in
general not descent schemes. Monotonicity is a desirable feature for improving numerical
stability of algorithms, and we show in Section 4.7.3 that simple modifications allows
enforcing monotonicity of accelerated methods at low technical and computational cost.
Albeit with a different presentation, such developments can be found in, e.g., (Tseng,
2008; Beck and Teboulle, 2009b). The technique is particularly simple to incorporate
within the potential function-based analyses of this section.

4.7.1 Handling Nonsmooth Terms/Constraints

In this section, we consider the problem of minimizing a sum of two convex functions:

F? = min
x∈Rd
{F (x) , f(x) + h(x)}, (4.19)

where f is L-smooth and (possibly µ-strongly) convex and where h is convex, closed, and
proper (CCP), which we denote by f ∈ Fµ,L and h ∈ F0,∞ (These technical conditions
ensure that the proximal operator, defined hereafter, is well defined everywhere on Rd.
We refer to the clear introduction by Ryu and Boyd (2016) and the references therein for
further details.) In addition, we assume a proximal operator of h to be readily available,
so

proxγh(x) , argmin
y
{γh(y) + 1

2‖x− y‖
2
2}, (4.20)

can be evaluated efficiently. (Section 5 deals with some cases where this operator is
approximated; see also the discussions in Section 4.9.) The proximal operator can be
seen as an implicit (sub)gradient step on h, as dictated by the optimality conditions of
the proximal operation

x+ = proxγh(x)⇔ x+ = x− γgh(x+) with gh(x+) ∈ ∂h(x+).

In particular, when h(x) is the indicator function of a closed convex set Q, the proximal
operation corresponds to the orthogonal projection onto Q. There are a few commonly

74 Nesterov Acceleration

used functions for which the proximal operation has an analytical solution such as
h(x) = ‖x‖1; see, for instance, the list provided by (Chierchia et al., 2020). In the proofs
below, we incorporate h using inequalities that characterize convexity, that is,

h(x) ≥ h(y) + 〈gh(y);x− y〉,

where gh(y) ∈ ∂h(y) is some subgradient of h at y. The proximal step (sometimes referred
to as backward, or implicit, step) is a base algorithmic tool in the first-order optimization
toolbox.

In this setting, classical methods for solving (4.19) involve a forward-backward splitting
strategy (in other words, forward steps (a.k.a. gradient steps) on f and backward steps
(a.k.a. proximal steps) on h), introduced by Passty (1979). This topic is addressed in
many references, and we refer to (Parikh and Boyd, 2014; Ryu and Boyd, 2016) and
the references therein for further details. In the context of accelerated methods, forward-
backward splitting was introduced by Nesterov (2003; 2013) through the concept of
gradient mapping; see also Tseng (2008) and Beck and Teboulle (2009a). Problem (4.19)
is also sometimes referred to as the composite convex optimization setting (Nesterov,
2013). Depending on the assumptions made on f and h, there are alternate ways of
solving this problem—for example, when the proximal operator is available for both, one
can use the Douglas-Rachford splitting (Douglas and Rachford, 1956; Lions and Mercier,
1979). However, this is beyond the scope of this section and we refer to (Ryu and Boyd,
2016; Condat et al., 2019) and the references therein for further discussions on this topic.

4.7.2 Adaptation to Unknown Regularity Parameters

In previous sections, we assumed f to be L-smooth and possibly µ-strongly convex.
Moreover, in the previous algorithms, we explicitly used the values of both L and µ to
design the methods. However, this is not a desirable feature. First, it means that we need
to be able to estimate valid values for L and µ. Second, it means that the methods are
not adaptive to potentially better (local) parameter values. That is, we do not benefit
from the problems being simpler than specified, i.e., where the smallest valid L is much
smaller than our estimate and/or the largest valid µ is much larger than our estimation.
Furthermore, we want to benefit from the typically better local properties of the function
at hand, along the path taken by the method, rather than relying on the global properties.
The difference between local and global regularity properties is often significant, and
adaptive methods often converge much faster in practice.

We discuss below how adaptation is implemented for the smoothness constant,
using line-search techniques. However, it remains an open question whether strong
convexity parameters can be efficiently estimated while maintaining reasonable worst-case
guarantees and without resorting to restart schemes (i.e., outer iterations) (see Section 6).

To handle unknown parameters, the key is to examine the inequalities used in the
proofs of the desired method. It turns out that smoothness is usually only used in
inequalities between pairs of iterates, which means that these inequalities can be tested

4.7. Practical Extensions 75

at runtime, at each iteration. Therefore, for our guarantees to hold, we do not need
the function to be L-smooth everywhere, but rather we only need a given inequality
to hold for the value of L that we are using (where the smoothness of the function
ensures that such an L exists). Conversely, strong convexity is typically only used in
inequalities involving the optimal point (see, for example, the proof of Theorem 4.12),
which we do not know a priori. As a result, these inequalities cannot be tested as the
algorithm proceeds, which complicates the estimation of strong convexity while running
the algorithm. Adaptation to strong convexity is therefore typically accomplished via the
use of restarts.

These approaches are common, and are not new (Goldstein, 1962; Armijo, 1966); they
were already used by Nesterov (1983). They were later adapted to the forward-backward
setting in Nesterov (2013) and Beck and Teboulle (2009a) and have been further exploited
to improve performance in various settings; see, e.g., (Scheinberg et al., 2014). The topic
is further discussed in the next section as well as in the notes and references provided in
Section 4.9.

An Accelerated Forward-backward Methods with Backtracking

As discussed above, the smoothness constant L is used very sparsely in the proofs of
both the gradient descent (Theorem 4.2 and Theorem 4.10) and the accelerated variants
(Theorem 4.8, Theorem 4.12, and Theorem 4.14). Essentially, it is only used in three
places: (i) to compute Ak+1 (only when µ > 0); (ii) to compute xk+1 = yk − 1

L∇f(yk);
and (iii) in the inequality

f(xk+1) ≤ f(yk) + 〈∇f(yk);xk+1 − yk〉+ L

2 ‖xk+1 − yk‖22. (4.21)

(Recall that this is known as the descent lemma since by substituting the gradient step
xk+1 = yk − 1

L∇f(yk) it can be written as f(xk+1) ≤ f(yk)− 1
2L‖∇f(yk)‖22.) Other than

L, (4.21) only contains information that we observe. Hence, we can simply check whether
this inequality holds for a given estimate of L. When it does not hold, we simply increase
the current approximation of L and then with this new estimate, recompute (i) Ak+1
(necessary only if µ > 0) and the corresponding yk and (ii) xk+1, using the new step
size. We then check again whether (4.21) is satisfied. If (4.21) is satisfied, then we can
proceed (because the potential inequality of the desired method is then verified—see,
e.g., Theorem 4.2 or Theorem 4.10 for gradient descent, or Theorem 4.8, Theorem 4.12,
or Theorem 4.14 for Nesterov’s methods), and otherwise we continue increasing our
approximation of L until the descent condition (4.21) is satisfied. Finally, to guarantee
that we only perform a finite number of “wasted” gradient steps to estimate L, we need an
appropriate rule for how to increase our approximation. It is common to simply multiply
the current approximation by some constant α > 1, thereby guaranteeing that at most
dlogα L

L0
e gradient steps, where L is the true smoothness constant and L0 is our starting

estimate, are wasted in the process. As we see below, both backtracking and nonsmooth

76 Nesterov Acceleration

terms require proofs very similar to those presented above, and potential-based analyses
are suitable.

We present two extensions of Nesterov’s first method that can handle nonsmooth
terms, and that have a backtracking procedure on the smoothness parameter. The first,
the fast iterative shrinkage-thresholding algorithm (FISTA), is particularly popular, while
the second resolves one potential issue that can arise in the original FISTA.

FISTA. The fast iterative shrinkage-thresholding algorithm, due to Beck and Teboulle
(2009a), is a natural extension of Nesterov (1983) in its first form (see Algorithm 14),
handling an additional nonsmooth term. In this section, we present a strongly convex
variant of FISTA, provided as Algorithm 19. The proof contains the same ingredients as
in the original work, and it can easily be compared to previous material.

Algorithm 19 Strongly convex FISTA, form I
Input: L-smooth µ-strongly (possibly with µ = 0) convex function f , a convex function h

with proximal operator available, an initial point x0, and an initial estimate L0 > µ.
1: Initialize z0 = x0, A0 = 0, and some α > 1.
2: for k = 0, . . . do
3: Lk+1 = Lk
4: loop
5: qk+1 = µ/Lk+1

6: Ak+1 = 2Ak+1+
√

4Ak+4qk+1A
2
k
+1

2(1−qk+1)

7: set τk = (Ak+1−Ak)(1+qk+1Ak)
Ak+1+2qk+1AkAk+1−qk+1A

2
k
and δk = Ak+1−Ak

1+qk+1Ak+1

8: yk = xk + τk(zk − xk)
9: xk+1 = proxh/Lk+1

(
yk − 1

Lk+1
∇f(yk)

)
10: zk+1 = (1− qk+1δk)zk + qk+1δkyk + δk (xk+1 − yk)
11: if (4.21) holds then
12: break {Iterates accepted; k will be incremented.}
13: else
14: Lk+1 = αLk+1 {Iterates not accepted; recompute new Lk+1.}
15: end if
16: end loop
17: end for
Output: An approximate solution xk+1.

The proof follows exactly the same steps as the proof of Theorem 4.12 (Nesterov’s
method for strongly convex functions), but it also accounts for the nonsmooth function h.
(Observe that the potential is stated in terms of F and not f .) Two additional inequalities,
involving the convexity of h between two different pairs of points, allow this nonsmooth
term to be taken into account. In this case, f is assumed to be smooth and convex
over Rd (i.e., it has full domain, dom f = Rd), and we are therefore allowed to evaluate
gradients of f outside of domain of h.

4.7. Practical Extensions 77

Theorem 4.20. Let f ∈ Fµ,L (with full domain: dom f = Rd); h be a closed convex
proper function; x? ∈ argminx {f(x) +h(x)}; and k ∈ N. For any xk, zk ∈ Rd and Ak ≥ 0,
the iterates of Algorithm 19 that satisfy (4.21) also satisfy

Ak+1(F (xk+1)− F?) + Lk+1 + µAk+1
2 ‖zk+1 − x?‖22

≤ Ak(F (xk)− F?) + Lk+1 + µAk
2 ‖zk − x?‖22,

with Ak+1 = 2Ak+1+
√

4Ak+4A2
k
qk+1+1

2(1−qk+1) and qk+1 = µ/Lk+1.

Proof. The proof consists of a weighted sum of the following inequalities.

• Strong convexity of f between x? and yk with weight λ1 = Ak+1 −Ak:

f(x?) ≥ f(yk) + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2.

• Strong convexity of f between xk and yk with weight λ2 = Ak:

f(xk) ≥ f(yk) + 〈∇f(yk);xk − yk〉.

• Smoothness of f between yk and xk+1 (descent lemma) with weight λ3 = Ak+1:

f(yk) + 〈∇f(yk);xk+1 − yk〉+ Lk+1
2 ‖xk+1 − yk‖22 ≥ f(xk+1).

• Convexity of h between x? and xk+1 with weight λ4 = Ak+1 −Ak:

h(x?) ≥ h(xk+1) + 〈gh(xk+1);x? − xk+1〉,

with gh(xk+1) ∈ ∂h(xk+1) and xk+1 = yk − 1
Lk+1

(∇f(yk) + gh(xk+1)).

• Convexity of h between xk and xk+1 with weight λ5 = Ak:

h(xk) ≥ h(xk+1) + 〈gh(xk+1);xk − xk+1〉.

We get the following inequality

0 ≥λ1[f(yk)− f(x?) + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2]

+ λ2[f(yk)− f(xk) + 〈∇f(yk);xk − yk〉]
+ λ3[f(xk+1)− (f(yk) + 〈∇f(yk);xk+1 − yk〉

+ Lk+1
2 ‖xk+1 − yk‖22)]

+ λ4[h(xk+1)− h(x?) + 〈gh(xk+1);x? − xk+1〉]
+ λ5[h(xk+1)− h(xk) + 〈gh(xk+1);xk − xk+1〉].

78 Nesterov Acceleration

By substituting yk, xk+1, and zk+1 with
yk = xk + τk(zk − xk)

xk+1 = yk − 1
Lk+1

(∇f(yk) + gh(xk+1))
zk+1 = (1− qk+1δk)zk + qk+1δkyk + δk (xk+1 − yk) ,

the previous weighted sum can be reformulated exactly as
Ak+1(f(xk+1) + h(xk+1)− f(x?)− h(x?))

+ Lk+1 + µAk+1
2 ‖zk+1 − x?‖22

≤Ak(f(xk) + h(xk)− f(x?)− h(x?)) + Lk+1 +Akµ

2 ‖zk − x?‖22

+
(Ak −Ak+1)2 −Ak+1 − qk+1A

2
k+1

1 + qk+1Ak+1

1
2Lk+1

‖∇f(yk) + gh(xk+1)‖22

− A2
k(Ak+1 −Ak)(1 + qk+1Ak)(1 + qk+1Ak+1)(

Ak+1 + 2qk+1AkAk+1 − qk+1A
2
k

)2 µ

2 ‖xk − zk‖
2
2.

Using 0 ≤ qk+1 ≤ 1 and selecting Ak+1 such that Ak+1 ≥ Ak and

(Ak −Ak+1)2 −Ak+1 − qk+1A
2
k+1 = 0,

yields the desired result:
Ak+1(f(xk+1) + h(xk+1)− f(x?)− h(x?))

+ Lk+1 + µAk+1
2 ‖zk+1 − x?‖22

≤Ak(f(xk) + h(xk)− f(x?)− h(x?)) + Lk+1 + µAk
2 ‖zk − x?‖22.

Finally, we obtain a complexity guarantee by adapting the potential argument (4.5)
and by noting that Ak+1 is a decreasing function of Lk+1 (whose maximal value is αL
assuming L0 < L and is otherwise L0). The growth rate of Ak in the smooth convex
setting remains unchanged; see (4.14). However, when L0 < L, its geometric grow rate
might actually be slightly degraded to

Ak+1 ≥
(

1−
√

µ

αL

)−1
Ak,

which remains better than the worst-case (1− µ
αL) rate of gradient descent with back-

tracking, assuming in both cases that L0 < L. When L0 > L the rates might respectively
be degraded to (1−

√
µ
L0

) and (1− µ
L0

) instead.

Corollary 4.21. Let f ∈ Fµ,L (with full domain: dom f = Rd); h be a closed convex
proper function; and x? ∈ argminx {F (x) , f(x) + h(x)}. For any N ∈ N, N ≥ 1, and
x0 ∈ Rd, the output of Algorithm 19 satisfies

F (xN)− F? ≤ min
{

2
N2 ,

(
1−

√
µ

`

)N}
`‖x0 − x?‖22,

with ` = max{αL,L0}.

4.7. Practical Extensions 79

Proof. We assume that L > L0 since otherwise f ∈ Fµ,L0 and the proof would directly
follow the case without backtracking. Define

φk , Ak(F (xk)− F?) + Lk + µAk
2 ‖zk − x?‖22.

Since Lk+1/Lk ≥ 1, we have

φk+1 ≤ Ak(F (xk)− F?) + Lk+1 + µAk
2 ‖zk − x?‖22 ≤

Lk+1
Lk

φk.

The chained potential argument (4.5) can then be adapted to obtain

AN (F (xN)− F?) ≤ φN ≤
LN
LN−1

φN−1 ≤
LN
LN−2

φN−2 ≤ . . . ≤
LN
L0

φ0,

where we used Theorem 4.20 and the fact that the output of the algorithm satisfies (4.21).
Using A0 = 0, we reach

F (xN)− F? ≤
LN‖x0 − x?‖22

2AN
.

Using our previous bounds on AN (noting that Ak+1 is a decreasing function of Lk+1) in,
e.g., Corollary 4.13, along with the fact that in the worst-case the estimated smoothness
cannot be larger than the growth rate α times the true constant LN < αL except if
L0 were already larger than the true L, in which case LN = L0. Therefore, we get
LN ≤ ` = max{αL,L0}, yielding the desired result.

Remark 4.7. There are two common variations on the backtracking strategy presented
in this section. One can, for example, reset Lk+1 ← L0 (in line 3 of Algorithm 19) at
each iteration, potentially using a total of Ndlogα L

L0
e additional gradient evaluations

over all iterations. Another possibility is to pick some additional constant 0 < β < 1 and
to initiate Lk+1 ← βLk (in line 3 of Algorithm 19). In the case β = 1/α, this strategy
potentially costs 1 additional gradient evaluation per iteration due to the backtracking
strategy, thus potentially using a total of N + dlogα L

L0
e additional gradient evaluations

over all iterations.
Such non-monotonic estimations of L can be incorporated at a low additional technical

cost. The corresponding methods and their analyses are essentially the same as those
of this section; they are provided in Appendix B.3.1 and B.3.2 (see Algorithm 31 and
Algorithm 32).

Remark 4.8. Variations on strongly convex extensions of FISTA, involving backtracking
line-searches, can be found in, e.g., (Chambolle and Pock, 2016; Calatroni and Chambolle,
2019; Florea and Vorobyov, 2018; Florea and Vorobyov, 2020), together with practical
improvements. The method presented in this section was designed for easy comparison
with the previous material.

80 Nesterov Acceleration

Another Accelerated Proximal Gradient Method

FISTA potentially evaluates gradients outside of the domain of h, and it therefore
implicitly assumes that f is defined even outside this region. In many situations, this
is not an issue, such as when f is quadratic. In this section, we instead assume that
f is continuously differentiable and satisfies smoothness condition (4.22) only for all
x, y ∈ domh.

Definition 4.2. Let 0 ≤ µ < L ≤ +∞ and C ⊆ Rd. A closed convex proper function
f : Rd → R ∪ {+∞} is L-smooth and µ-strongly convex on C (written f ∈ Fµ,L(C)) if
and only if

• (L-smoothness) there exists an open set C ′ such that C ⊆ C ′ and f is continuously
differentiable on C ′, and for all x, y ∈ C, it holds that

f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2
2; (4.22)

• (µ-strong convexity) for all x, y ∈ C, it holds that

f(x) ≥ f(y) + 〈gf (y);x− y〉+ µ

2 ‖x− y‖
2
2, (4.23)

where gf (y) ∈ ∂f(y) is a subgradient of f at y. (Note that gf (y) = ∇f(y) when f
is differentiable.)

By extension, Fµ,∞(C) denotes the set of closed µ-strongly convex proper functions
whose domain contains C, and F0,∞ denotes the set of closed convex proper functions.

There exist different ways of handling this situation. The method presented in this
section relies on using the proximal operator on the sequence zk and on formulating
Nesterov’s method in form III (see Algorithm 13). In this situation, assuming the initial
point is feasible (F (x0) < ∞) implies both the xk and yk are obtained from convex
combinations of feasible points and hence are feasible.

A wide variety of accelerated methods exists; most variants solve the issue of FISTA
using two proximal operations per iteration (on both of the sequences xk and zk). The
variant in this section performs only one projection per iteration, while also fixing the
infeasibility issue of yk in FISTA. Variations on this theme can found in a number of
references; see, for example, (Auslender and Teboulle, 2006, “Improved interior gradient
algorithm”), (Tseng, 2008, Algorithm 1), or more recently (Gasnikov and Nesterov, 2018,
“Method of similar triangles”).

Theorem 4.22. Let h ∈ F0,∞, f ∈ Fµ,L(domh); x? ∈ argminx {F (x) , f(x) + h(x)};
and k ∈ N. For any xk, zk ∈ Rd and Ak ≥ 0, the iterates of Algorithm 20 that satisfy (4.21)
also satisfy

Ak+1(F (xk+1)− F?) + Lk+1 + µAk+1
2 ‖zk+1 − x?‖22

≤ Ak(F (xk)− F?) + Lk+1 + µAk
2 ‖zk − x?‖22,

4.7. Practical Extensions 81

Algorithm 20 A proximal accelerated gradient method
Input: h ∈ F0,∞ with proximal operator available, f ∈ Fµ,L(domh), an initial point

x0 ∈ domh, and an initial estimate L0 > µ.
1: Initialize z0 = x0, A0 = 0, and some α > 1.
2: for k = 0, . . . do
3: Lk+1 = Lk
4: loop
5: qk+1 = µ/Lk+1

6: Ak+1 = 2Ak+1+
√

4Ak+4qk+1A
2
k
+1

2(1−qk+1)

7: set τk = (Ak+1−Ak)(1+qk+1Ak)
Ak+1+2qk+1AkAk+1−qk+1A

2
k
and δk = Ak+1−Ak

1+qk+1Ak+1

8: yk = xk + τk(zk − xk)
9: zk+1 = proxδkh/Lk+1

(
(1− qk+1δk)zk + qk+1δkyk − δk

Lk+1
∇f(yk)

)
10: xk+1 = Ak

Ak+1
xk + (1− Ak

Ak+1
)zk+1

11: if (4.21) holds then
12: break {Iterates accepted; k will be incremented.}
13: else
14: Lk+1 = αLk+1 {Iterates not accepted; recompute new Lk+1}
15: end if
16: end loop
17: end for
Output: Approximate solution xk+1.

with Ak+1 = 2Ak+1+
√

4Ak+4A2
k
qk+1+1

2(1−qk+1) and qk+1 = µ/Lk+1.

Proof. First, zk is in domh by construction—it is the output of the proximal/projection
step. Furthermore, we have 0 ≤ Ak

Ak+1
≤ 1 given that Ak+1 ≥ Ak ≥ 0. A direct consequence

is that since z0 = x0 ∈ domh, all subsequent {yk} and {xk} are also in domh (as they
are obtained from convex combinations of feasible points).

The rest of the proof consists of a weighted sum of the following inequalities (which
are valid due to the feasibility of the iterates).

• Strong convexity of f between x? and yk with weight λ1 = Ak+1 −Ak:

f(x?) ≥ f(yk) + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2.

• Convexity of f between xk and yk with weight λ2 = Ak:

f(xk) ≥ f(yk) + 〈∇f(yk);xk − yk〉.

• Smoothness of f between yk and xk+1 (descent lemma) with weight λ3 = Ak+1:

f(yk) + 〈∇f(yk);xk+1 − yk〉+ Lk+1
2 ‖xk+1 − yk‖22 ≥ f(xk+1).

82 Nesterov Acceleration

• Convexity of h between x? and zk+1 with weight λ4 = Ak+1 −Ak:

h(x?) ≥ h(zk+1) + 〈gh(zk+1);x? − zk+1〉,

with gh(zk+1) ∈ ∂h(zk+1) and zk+1 = (1−qδk)zk+qδkyk− δk
Lk+1

(∇f(yk)+gh(zk+1)).

• Convexity of h between xk and xk+1 with weight λ5 = Ak:

h(xk) ≥ h(xk+1) + 〈gh(xk+1);xk − xk+1〉,

with gh(xk+1) ∈ ∂h(xk+1).

• Convexity of h between zk+1 and xk+1 with weight λ6 = Ak+1 −Ak:

h(zk+1) ≥ h(xk+1) + 〈gh(xk+1); zk+1 − xk+1〉.

We this obtain the following inequality:

0 ≥λ1[f(yk)− f(x?) + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2]

+ λ2[f(yk)− f(xk) + 〈∇f(yk);xk − yk〉]
+ λ3[f(xk+1)− (f(yk) + 〈∇f(yk);xk+1 − yk〉

+ Lk+1
2 ‖xk+1 − yk‖22)]

+ λ4[h(zk+1)− h(x?) + 〈gh(zk+1);x? − zk+1〉]
+ λ5[h(xk+1)− h(xk) + 〈gh(xk+1);xk − xk+1〉]
+ λ6[h(xk+1)− h(zk+1) + 〈gh(xk+1); zk+1 − xk+1〉].

By substituting yk, zk+1, and xk+1 with
yk = xk + τk(zk − xk)

zk+1 = (1− qk+1δk)zk + qk+1δkyk −
δk
Lk+1

(∇f(yk) + gh(zk+1))

xk+1 = Ak
Ak+1

xk +
(

1− Ak
Ak+1

)
zk+1,

we reformulate the previous inequality as
Ak+1(f(xk+1) + h(xk+1)− f(x?)− h(x?))

+ Lk+1 +Ak+1µ

2 ‖zk+1 − x?‖22

≤Ak(f(xk) + h(xk)− f(x?)− h(x?)) + Lk+1 +Akµ

2 ‖zk − x?‖22

+
(Ak −Ak+1)2

(
(Ak −Ak+1)2 −Ak+1 − qk+1A

2
k+1

)
Ak+1(1 + qk+1Ak+1)2

× 1
2Lk+1

‖∇f(yk) + gh(zk+1)‖22

− A2
k(Ak+1 −Ak)(1 + qk+1Ak)(1 + qk+1Ak+1)(

Ak+1 + 2qk+1AkAk+1 − qk+1A
2
k

)2 µ

2 ‖xk − zk‖
2
2.

4.7. Practical Extensions 83

Then selecting Ak+1 ≥ Ak such that

(Ak −Ak+1)2 −Ak+1 − qk+1A
2
k+1 = 0,

yields the desired result:

Ak+1(f(xk+1) + h(xk+1)− f(x?)− h(x?))

+ Lk+1 + µAk+1
2 ‖zk+1 − x?‖22

≤Ak(f(xk) + h(xk)− f(x?)− h(x?)) + Lk+1 + µAk
2 ‖zk − x?‖22.

We have the following corollary.

Corollary 4.23. Let h ∈ F0,∞, f ∈ Fµ,L(domh), and x? ∈ argminx {F (x) , f(x)+h(x)}.
For any N ∈ N, N ≥ 1, and x0 ∈ Rd, the output of Algorithm 20 satisfies

F (xN)− F? ≤ min
{

2
N2 ,

(
1−

√
µ

`

)−N}
`‖x0 − x?‖22,

with ` = max{αL,L0}.

Proof. The proof follows the same arguments as those for Corollary 4.21, using the
potential from Theorem 4.22 with the fact the output of the algorithm satisfies (4.21).

Remark 4.9. In this section, we introduced backtracking techniques by examining how
the inequalities are used in previous proofs. In particular, because smoothness is used only
through the descent lemma in which the only unknown value is L, one can simply check
this inequality at runtime. Another way to exploit the observation of which inequalities
are needed in a proof is to identify minimal assumptions on the class of functions under
which it is possible to prove accelerated rates; this topic is explored by, e.g., Necoara
et al. (2019) and Hinder et al. (2020). More generally the same question holds for the
ability to prove the convergence rates of simpler methods, such as gradient descent (Bolte
et al., 2017; Necoara et al., 2019).

4.7.3 Monotone Accelerated Methods

As emphasized in previous sections, accelerated methods are quasi-monotone, meaning
that their worst-case guarantees are decreasing functions of the number of iteration.
However, they are generally not monotone, as the function values are not guaranteed to
be improved from iteration to iteration.

In this section, we introduce a simple trick for making common accelerated methods
monotone. The technique stems from a simple observation that the iterates {xk}k can be
slightly changed while maintaining the worst-case guarantees (see, e.g., (Tseng, 2008)).
That is, we introduce an additional sequence, denoted by {x̃k}k for which {F (x̃k)}k is
monotonically decreasing. For instance, for all problems on which {F (xk)}k is already
monotonically decreasing, we have xk = x̃k for all k.

84 Nesterov Acceleration

As it is, the trick does not apply to the optimized gradient method (Algorithm 9), the
information theoretic exact method (Algorithm 17) and the triple momentum method
(Algorithm 18) due to the slightly different structure of their potential functions. However,
this trick is valid for all other methods presented in this section, as well as those presented
in Appendix B and the proximal accelerated methods from Section 5.

Algorithm 21 Wrapper: monotone accelerated methods
Input: Pick an algorithm A among Algorithms {11, 12, 13, 14, 15, 16, 19, 20, 28, 29,

31, 32} and use the same inputs the same associated problem inputs, including an
initial guess x0 ∈ Rd.

1: Initialize Execute initialization step from the chosen algorithm, as well as x̃0 = x0.
2: for k = 0, . . . do
3: xk = x̃k
4: Execute one iteration of the chosen algorithm (one update for each sequence).
5: x̃k+1 = argminx{F (x) : x ∈ {xk+1, x̃k}}
6: end for

Output: Approximate solution xk+1.

The following fact summarizes the result for this method. In a nutshell, the desired
result (i.e., same worst-case guarantees as previous algorithms while having a monotone
sequence {F (x̃k)}k) is achieved due to two fact. First, the sequence {x̃k}k is constructed
for satisfying F (x̃k+1) ≤ F (xk+1), and hence the potential function analyses of all
the algorithmic schemes is preserved. Secondly, the sequence is built for satisfying
F (x̃k+1) ≤ F (x̃k) and hence it is monotonically decreasing.

Theorem 4.24. Let A be an algorithm in {11, 12, 13, 14, 15, 16, 19, 20, 28, 29, 31,
32}, let F ∈ F0,∞ be the convex function on which this algorithm is applied (possibly
F , f + h with f and h satisfying the input requirements under which A operates), and
x0 ∈ Rd. Further let {x̃k}k be the sequence generated by Algorithm 21 with A on F and
x0. It follows that F (x̃N) satisfies the same worst-case guarantee as that of A:

F (x̃N)− F? ≤
L‖x0 − x?‖22

2AN
,

with AN being defined in A. In addition, the sequence {F (x̃k)}k is monotonically de-
creasing.

Proof. The proof follows from the fact that worst-case guarantees for all algorithms under
consideration rely on the same potential function:

φk , Ak(F (xk)− F?) + L+ µAk
2 ‖zk − x?‖22.

Defining the alternate potential φ̃k as

φ̃k , Ak(F (x̃k)− F?) + L+ µAk
2 ‖zk − x?‖22,

4.7. Practical Extensions 85

it follows from F (x̃k) ≤ F (xk) and Ak ≥ 0 that

φ̃k ≤ φk

for all k ≥ 0. Furthermore, it follows from the fact that

φ̃k+1 ≤ φk+1 ≤ φk

for all xk ∈ Rd that we can choose xk = x̃k, thereby reaching φ̃k+1 ≤ φ̃k. Therefore, it
holds that

AN (F (x̃N)− F?) ≤ φ̃N ≤ φ̃0 = L‖x0 − x?‖22
2 .

Hence, the same worst-case guarantees are achieved.
Finally, monotonicity is obtained by construction. That is, the sequence satisfies

F (x̃k+1) ≤ F (x̃k) (for all k ≥ 0) and hence is monotonically decreasing.

4.7.4 Beyond Euclidean Geometries using Mirror Maps

In this section, we put ourselves in a slightly different scenario, often referred to as the
non-Euclidean setting or the mirror descent setup. We consider the convex minimization
problem:

F? = min
x∈Rd
{F (x) , f(x) + h(x)}, (4.24)

with h, f : Rd → R ∪ {+∞} closed, convex, and proper. Furthermore, we assume f to
be differentiable and to have Lipschitz gradients with respect to some (possibly non-
Euclidean) norm ‖.‖. That is, with the corresponding dual norm denoted by ‖s‖∗ =
supx{〈s;x〉 : ‖x‖ ≤ 1}, we require

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖

for all x, y ∈ domh. In this setting, inequality (4.22) also holds (see Appendix A.2), and
we, perhaps abusively, also denote f ∈ F0,L(domh).

To solve (4.24), we define a few additional ingredients. First, we pick a 1-strongly
convex, closed proper function w : Rd → R ∪ {+∞} such that domh ⊆ domw. (Recall
that by assumption on h, domh 6= ∅, and therefore domw 6= ∅.) These assumptions
ensure that the proximal operations below are well defined; w is commonly referred to as
the distance generating function. Under additional technical assumptions, w could be
chosen as a strictly convex function instead, and similar algorithms can be used, but we
focus on the strongly convex case here.

Finally, pick gw(y) ∈ ∂w(y), and define the Bregman divergence generated by w as

Dw(x; y) = w(x)− w(y)− 〈gw(y);x− y〉, (4.25)

which we use below as a notion of distance to generalize the previous proximal opera-
tor (4.20). Note that the Bregman divergence Dw(.; .) generated by any subgradient of w
at zk is considered valid here.

86 Nesterov Acceleration

The base ingredient we use to solve (4.24) is the Bregman proximal gradient step,
with step size ak

L :

zk+1 = argmin
y

{
ak
L

(h(y) + 〈∇f(yk); y − yk〉) +Dw(y; zk)
}
, (4.26)

which corresponds to the usual Euclidean proximal gradient step when w(x) = 1
2‖x‖

2
2.

Under previous assumptions, (4.26) is well defined and we can explicitly write

gw(zk+1) 3 gw(zk)−
ak
L

(∇f(yk) + gh(zk+1)) ,

with some gw(zk+1) ∈ ∂w(zk+1), gw(zk) ∈ ∂w(zk), and gh(zk+1) ∈ ∂h(zk+1).
Under this construction, one can rely on (4.26) to solve (4.24) using Algorithm 22.

Note that when w is differentiable (which is usually the case but which necessitates
further discussions when requiring w to be closed, convex, and proper), we often refer to
∇w as a mirror map. This refers to a bijective mapping due to the strong convexity and
differentiability of w. In this case, the iterations can be described as

∇w(zk+1) = ∇w(zk)−
ak
L

(∇f(yk) + gh(zk+1)) .

Algorithm 22 Proximal accelerated Bregman gradient method
Input: h ∈ F0,∞, f ∈ F0,L(domh), w ∈ F1,∞ with domh ⊆ domw, and x0 ∈ domh

(such that ∂w(z0) 6= ∅).
1: Initialize z0 = x0 and A0 = 0.
2: for k = 0, . . . do
3: ak = 1+

√
4Ak+1
2

4: Ak+1 = Ak + ak
5: yk = Ak

Ak+1
xk +

(
1− Ak

Ak+1

)
zk

6: zk+1 = argminy
{ak
L (h(y) + 〈∇f(yk); y − yk〉) +Dw(y; zk)

}
7: xk+1 = Ak

Ak+1
xk +

(
1− Ak

Ak+1

)
zk+1

8: end for
Output: Approximate solution xk+1.

Theorem 4.25 provides a convergence guarantee for Algorithm 22 by a potential
argument.

Theorem 4.25. Let h ∈ F0,∞, f ∈ F0,L(domh), w ∈ F1,∞ with domh ⊆ domw,
x? ∈ argminx{F (x) , f(x) + h(x)}, and k ∈ N. For any xk, zk ∈ domh such that
∂w(zk) 6= ∅ and Ak ≥ 0; the iterates of Algorithm 22 satisfy

Ak+1(F (xk+1)− F?) + LDw(x?; zk+1)
≤ Ak(F (xk)− F?) + LDw(x?; zk),

where Ak+1 = Ak + 1+
√

4Ak+1
2 and Dw(.; .) is a Bregman divergence (4.25) with respect

to w. Furthermore, ∂w(zk+1) 6= ∅.

4.7. Practical Extensions 87

Proof. First, zk is feasible, i.e., zk ∈ domh, by construction. Indeed, z0 is feasible by
assumption, and the following iterates zk (k > 0) are obtained after proximal steps; hence,
∂h(zk) 6= ∅, and therefore, zk ∈ domh.

Second, it can be directly verified that 0 ≤ Ak
Ak+1

≤ 1 given that Ak+1 ≥ Ak ≥ 0.
It follows from z0 = x0 ∈ domh that the elements of {yk} and {xk} are obtained as
convex combinations of elements of {zk}. Hence, the sequences {yk} and {xk} are also in
domh, which is convex. The rest of the proof consists of a weighted sum of the following
inequalities.

• Convexity of f between x? and yk with weight λ1 = Ak+1 −Ak:

f(x?) ≥ f(yk) + 〈∇f(yk);x? − yk〉.

• Convexity of f between xk and yk with weight λ2 = Ak:

f(xk) ≥ f(yk) + 〈∇f(yk);xk − yk〉.

• Smoothness of f between yk and xk+1 (descent lemma) with weight λ3 = Ak+1:

f(yk) + 〈∇f(yk);xk+1 − yk〉+ L

2 ‖xk+1 − yk‖2 ≥ f(xk+1).

• Convexity of h between x? and zk+1 with weight λ4 = Ak+1 −Ak:

h(x?) ≥ h(zk+1) + 〈gh(zk+1);x? − zk+1〉,

with gh(zk+1) ∈ ∂h(zk+1).

• Convexity of h between xk and xk+1 with weight λ5 = Ak:

h(xk) ≥ h(xk+1) + 〈gh(xk+1);xk − xk+1〉,

with gh(xk+1) ∈ ∂h(xk+1).

• Convexity of h between zk+1 and xk+1 with weight λ6 = Ak+1 −Ak

h(zk+1) ≥ h(xk+1) + 〈gh(xk+1); zk+1 − xk+1〉.

• Strong convexity of w between zk+1 and zk with weight λ7 = L

w(zk+1) ≥ w(zk) + 〈gw(zk); zk+1 − zk〉+ 1
2‖zk − zk+1‖2,

with gw(zk) ∈ ∂w(zk).

88 Nesterov Acceleration

We thus obtain the following inequality:

0 ≥λ1[f(yk)− f? + 〈∇f(yk);x? − yk〉]
+ λ2[f(yk)− f(xk) + 〈∇f(yk);xk − yk〉]

+ λ3[f(xk+1)− (f(yk) + 〈∇f(yk);xk+1 − yk〉+ L

2 ‖xk+1 − yk‖2)]

+ λ4[h(zk+1)− h(x?) + 〈gh(zk+1);x? − zk+1〉]
+ λ5[h(xk+1)− h(xk) + 〈gh(xk+1);xk − xk+1〉]
+ λ6[h(xk+1)− h(zk+1) + 〈gh(xk+1); zk+1 − xk+1〉]

+ λ7[w(zk)− w(zk+1) + 〈gw(zk); zk+1 − zk〉+ 1
2‖zk − zk+1‖2].

Now, by substituting (using gw(zk+1) ∈ ∂w(zk+1))

yk = Ak
Ak+1

xk +
(

1− Ak
Ak+1

)
zk

gw(zk+1) = gw(zk)−
Ak+1 −Ak

L
(∇f(yk) + gh(zk+1))

xk+1 = Ak
Ak+1

xk +
(

1− Ak
Ak+1

)
zk+1,

we obtain exactly ‖xk+1 − yk‖2 = (Ak+1−Ak)2

A2
k+1

‖zk − zk+1‖2. The weighted sum can then
be reformulated exactly as

Ak+1(F (xk+1)− F?) + LDw(x?, zk+1)
≤ Ak(F (xk)− F?) + LDw(x?, zk)

+ (Ak −Ak+1)2 −Ak+1
Ak+1

L

2 ‖zk − zk+1‖2,

and we obtain the desired inequality from selecting Ak+1 that satisfies Ak+1 ≥ Ak and

(Ak −Ak+1)2 −Ak+1 = 0.

We conclude this section by providing a final corollary to describe the worst-case
performance of the method.

Corollary 4.26. Let h ∈ F0,∞, f ∈ F0,L(domh), w ∈ F1,∞ with domh ⊆ domw, and
x? ∈ argminx{F (x) , f(x) + h(x)}. For any x0 ∈ domh such that ∂w(x0) 6= ∅ and any
N ∈ N; the iterates of Algorithm 22 satisfy

F (xN)− F? ≤
LDw(x?; z0)

AN
≤ 4LDw(x?; z0)

N2 .

Proof. The claim directly follows from previous arguments using the potential φk ,
Ak(F (xk)− F?) + LDw(x?; zk), along with AN ≥ N2

4 from (4.14).

4.7. Practical Extensions 89

Remark 4.10. Bregman first-order methods are often split into two different families:
mirror descent and dual averaging (which we did not explicitly mention here), for which
we refer the reader to the discussions in (Bubeck, 2015, Chapter 4). The method presented
in this section is essentially a case of (Tseng, 2008, Algorithm 1), and it corresponds
to (Auslender and Teboulle, 2006, “Improved interior gradient algorithm”) when the
norm is Euclidean. It is also similar to (Tseng, 2008, Algorithm 3) and to (Gasnikov and
Nesterov, 2018, “Method of similar triangles”), which are “dual-averaging” versions of the
same algorithm: they are essentially equivalent in the Euclidean setup without constraints.
The method presented here enjoys a number of variants (see, e.g., discussions in (Tseng,
2008)), some of which may involve two projections per iteration, as in (Nesterov, 2005,
Section 3), (Lan et al., 2011, Section 3). The method can also naturally be embedded
with a backtracking procedure, exactly as in previous sections. Finally, such methods can
be adapted to strong convexity, either on f , as in (Gasnikov and Nesterov, 2018) or on h,
as in (Diakonikolas and Guzmán, 2021).

Remark 4.11. Note that the technique for rendering accelerated methods monotone (see
Section 4.7.3) also directly applies to Algorithm 22.

Remark 4.12. Beyond the Euclidean setting where w(x) = 1
2‖.‖

2
2, a classical example of

the impact of the non-Euclidean setup optimizes a simple function over the simplex. In
this case, writing x(i) for the ith component of some x ∈ Rd, we consider the situation
where h is the indicator function of the simplex

h(x) =
{

0 if ∑d
i=1 x

(i) = 1, x(i) ≥ 0 (i = 1, . . . , d)
+∞ otherwise,

and w is the entropy (which is closed, convex, and proper, and 1-strongly convex over
the simplex for ‖.‖ = ‖.‖1; this is known as Pinsker’s inequality). That is, define some
wi : R→ R:

wi(x) =


x log x if x > 0,
0 if x = 0,
+∞ otherwise,

and set w(x) = ∑d
i=1wi(x(i)). In this case, the expression for the Bregman proximal

gradient step in Algorithm 22 can be computed exactly, assuming y
(i)
k 6= 0 (for all

i = 1, ..., d):

z
(i)
k+1 =

y
(i)
k exp

[
−ak

L [∇f(yk)](i)
]

∑d
i=1 y

(i)
k exp

[
−ak

L [∇f(yk)](i)
] .

Hence, we also have that y(i)
k 6= 0 as long as y(i)

0 6= 0; a common technique is to instantiate
x

(i)
0 = 1

d .
In this setup, a non-Euclidean geometry often provides a significant practical advantage

when optimizing large-scale functions by improving the dependence from d to ln d
in the final complexity bound. In fact, here we have Dw(x?, x0) ≤ ln d compared to

90 Nesterov Acceleration

D1
2‖.‖

2
2
(x?, x0) ≤ 1

2 in the Euclidean case, so the dependence in d is seemingly better in
the Euclidean case. However, the choice of norms has a very significant impact. When
the gradient has a small Lipschitz constant measured with respect to ‖.‖ = ‖.‖1, that is,

‖∇f(x)−∇f(y)‖∞ ≤ L1‖x− y‖1,

the Lipschitz constant might be up to d times smaller than the constant computed using
the Euclidean norm ‖.‖ = ‖.‖2 (using norm equivalences), i.e.,

‖∇f(x)−∇f(y)‖2 ≤ L2‖x− y‖2,

with L1 ∼ L2/d. The final complexity bound using a Euclidean geometry then reads

F (xN)− F? ≤ 2L1d
N2 ,

as compared to
F (xN)− F? ≤ 4L1 ln d

N2

using the geometry induced by the entropy. The impact of the choice of norm is discussed
extensively in, e.g. (Juditsky et al., 2009, Example 2.1) and (d’Aspremont et al., 2018).

Another related example is optimizing over a spectrahedron; see, for example, the nice
introduction by Bubeck (2015, Chapter 4). This setup is largely motivated in (Nesterov,
2005). We refer to (Allen-Zhu and Orecchia, 2017; Diakonikolas and Guzmán, 2021) and
the references therein for further discussions on this topic.

4.8 Continuous-time Interpretations

Before concluding this section, we survey another last popular approach to Nesterov’s
acceleration. The idea is to study continuous versions of first-order schemes, which enables
simpler (less technical) proofs to emerge. One notorious caveat of such approaches is that
they usually defer implementation details (i.e., discretization) to integration solvers (such
as explicit Euler’s scheme), but the simplicity of the proofs arguably renders this approach
worth investigating. In particular, we see later that one usually does not use smoothness
when computing worst-case convergence speeds. That is, smoothness is intrinsically
linked to the discretization procedure, and not at all to the convergence speed of the
continuous-time processes.

The section is divided in three parts. We start by reviewing results related to the
gradient flow, a natural ordinary differential equation (ODE) for modelling first-order
methods. Then, we continue with Nesterov’s ODE, the continuous-time limit of Nesterov’s
accelerated gradient method as the step size vanishes (Su et al., 2014). We conclude
with discussions and pointers to different results and research directions relying on ODE
interpretations of Nesterov’s method.

For simplicity purposes, we make the choice of only presenting informal arguments for
obtaining the continuous-time versions of gradient descent and of Nesterov’s acceleration.

4.8. Continuous-time Interpretations 91

4.8.1 Gradient Flow

A starting point for linking first-order methods to continuous-time processes is to minimize
a convex function f by following its gradient flow{

ẋ(t) = −∇f(x(t)),
x(0) = x0

(4.27)

where ẋ(t) = dx(t)
dt denotes the usual time derivative of x, and where the time t ∈ R

takes the role of the usual iteration counter k ∈ N. For technical reasons, we also assume
throughout that f is L-smooth, as it ensures the existence of a solution to (4.27).

From (4.27), one can recover usual first-order methods by playing with different
integration schemes. Hence, first-order methods can typically be interpreted in the light
of integration schemes, through specific notions of numerical stability, see, e.g., (Scieur
et al., 2017b). In short, whereas integration schemes typically aim at tracking the full
trajectory of an ODE, optimization methods only target tracking the stationary point
of (4.27) thereby requiring less stringent notions of numerical stability.

As a particular case, the classical explicit Euler integration scheme applied to (4.27)
boils down to gradient descent for minimizing f(x). On the other hand, (4.27) can be
obtained as a natural continuous-time counterpart to gradient descent with vanishing
step size. That is, gradient descent with step size ∆ can be written as

xk+1 − xk
∆ = −∇f(xk).

Informally, assume that the sequence {xk}k is obtained as an approximation to a solution
x(t) to an ODE, with x(0) = x0 and x(t) ≈ x(k∆). It is clear that

xk+1 ≈ x(t+ ∆) = x(t) + ∆ẋ(t) + o(∆),

and hence
−∇f(x(t)) = x(t+ ∆)− x(∆)

∆ = ẋ(t) + o(∆)
∆ ,

leading to (4.27) by taking the limit ∆→ 0 on both sides.
Before moving to Nesterov’s ODE, we glance at the convergence speed of the gradient

flow towards an optimum when f is a convex function. For doing that, we use a similar
potential function as that used in the discrete setup.

Convergence speed. We proceed essentially as in the previous section, but we see below
that the proofs are much less technical. We introduce the (continuous) potential function:

φ(t) , a(t) (f(x(t))− f(x?)) + ‖x(t)− x?‖22.

The analysis simply consists in showing that φ̇(t) ≤ 0. Indeed, just as in the discrete
setup, we can then write:

φ(t) ≤ φ(0),

92 Nesterov Acceleration

with φ(t) ≥ a(t) (f(x(t))− f(x?)) and φ(0) = ‖x(t)− x?‖22. Thereby, we reach

f(x(t))− f(x?) ≤
φ(0)
a(t) = ‖x(t)− x?‖22

a(t) ,

and the worst-case speed of convergence of f(x(t)) towards f(x?) is dictated by the
growth rate of a(t).

Theorem 4.27. Let f be a closed proper convex function, x? ∈ argminx f(x), and let
a(t) = t. For any x(·) solution to (4.27) and any t ≥ 0, it holds that

φ̇(t) ≤ 0,

with
φ(t) , a(t) (f(x(t))− f(x?)) + ‖x(t)− x?‖22.

Proof. The proof simply uses a convexity inequality between x(t) and x?. That is, explicit
computations allow obtaining:

φ̇(t) = ȧ(t) (f(x(t))− f(x?))− a(t)‖∇f(x(t))‖22 − 〈∇f(x(t));x(t)− x?〉.

Then, a convexity inequality

f(x(t))− f(x?) ≤ 〈∇f(x(t));x(t)− x?〉

allows writing

φ̇(t) ≤ −a(t)‖∇f(x(t))‖22 + (ȧ(t)− 1)〈∇f(x(t));x(t)− x?〉,

and we reach the desired inequality using ȧ(t) = 1:

φ̇(t) ≤ −a(t)‖∇f(x(t))‖22 ≤ 0.

Corollary 4.28. Let f be a closed proper convex function and x? ∈ argminx f(x). For
any x(·) solution to (4.27) and any t ≥ 0, it holds that

f(x(t))− f(x?) ≤
‖x(0)− x?‖22

t
.

Proof. The proof follows from φ̇(t) ≤ 0 (Theorem 4.27) and

f(x(t))− f(x?) ≤
φ(0)
a(t) = ‖x(0)− x?‖22

a(t) ,

with a(t) = t.

4.8.2 An Ordinary Differential Equation for Nesterov’s Method

In this section, we briefly study a different ODE, namely
ÿ(t) + 3

t+T ẏ(t) +∇f(y(t)) = 0,
y(0) = x0,

ẏ(0) = 0,
(4.28)

4.8. Continuous-time Interpretations 93

where T ≥ 0 is some constant. This ODE with T = 0 was proposed in (Su et al., 2014)
as the continuous-time interpretation of Nesterov’s method. The case T > 0 might be
considered instead for simplicity of the exposition, rendering the ODE directly well-
defined even for t = 0. For simplicity, we also consider Algorithm 12 with ak = k

2 for
k = 0, 1, . . . (leading to Ak = k2

4), that is,

xk+1 = yk −∆∇f(yk)

yk+1 = xk+1 + k

k + 3(xk+1 − xk),
(4.29)

for k = 0, 1, In this setup, the method can also be described in terms of a single
sequence:

yk+1 = yk −∆∇f(yk) + k

k + 3(yk − yk−1)

− k

k + 3∆(∇f(yk)−∇f(yk−1)).
(4.30)

As shown in (Su et al., 2014), it turns out that (4.28) can be seen as the continuous-time
limit of (4.29) as ∆→ 0. Using a similar informal development to that of (Su et al., 2014),
a few approximations allow to arrive to the desired ODE. For doing that, let us denote
by y(t) a trajectory of the limiting ODE, and let us assume that it is approximated by
Nesterov’s method (acting as a numerical integrator) as y(t) ≈ yt/√∆ (i.e., we make the
correspondence y

(
k
√

∆
)
≈ yk). Note the time scaling in

√
∆ instead of ∆ due to the

second-order dynamics of the system. Next, we use the following Taylor expansions

y
(
t+
√

∆
)
− y(t)

√
∆

= ẏ(t) +
√

∆
2 ÿ(t) + o

(√
∆
)

y
(
t−
√

∆
)
− y(t)

√
∆

= −ẏ(t) +
√

∆
2 ÿ(t) + o

(√
∆
)

√
∆∇f

(
y
(
t+
√

∆
))

=
√

∆∇f(y(t)) + o
(√

∆
)

t

t+ 3
√

∆
= 1− 3

√
∆
t

+ o
(√

∆
)

for writing

ẏ(t)+
√

∆
2 ÿ(t) + o

(√
∆
)

=
(

1− 3
√

∆
t

)(
ẏ(t)−

√
∆
2 ÿ(t) + o

(√
∆
))
−
√

∆∇f(y(t)).

Simplifying these expressions, dividing all terms by
√

∆ and taking the limit ∆→ 0 leads
to the desired

ÿ(t) + 3
t
ẏ(t) +∇f(y(t)) = 0.

94 Nesterov Acceleration

Convergence speed. As for the gradient flow, the analysis only requires an appropriate
(continuous) potential function φ(t). The desired conclusion follows from showing that
φ̇(t) < 0, as provided by the following theorem.

Theorem 4.29. Let f be a closed proper convex function and x? ∈ argminx f(x). For
any x(·) solution to (4.28) and any t ≥ 0, it holds that

φ̇(t) ≤ 0,

with
φ(t) , (t+ T)2(f(x(t))− f?) + 2‖x(t) + t+T

2 ẋ(t)− x?‖22.

Proof. From the expression of φ(t), it is relatively straightforward to obtain that

φ̇(t) =2(t+ T)(f(x(t))− f(x?)) + (t+ T)2〈∇f(x(t)); ẋ(t)〉

+ 4〈(x(t) + t+ T

2 ẋ(t)− x?);
3
2 ẋ(t) + t+ T

2 ẍ(t)〉.

Using (4.28), one can substitute the expression of ẍ(t), leading to

φ̇(t) = 2(t+ T)(f(x(t))− f(x?)) + 2(t+ T)〈∇f(x(t));x? − x(t)〉

and it follows from convexity that φ̇(t) ≤ 0, as desired.

Corollary 4.30. Let f be a closed proper convex function and x? ∈ argminx f(x). For
any x(·) solution to (4.28) and any t ≥ 0, it holds that

f(x(t))− f(x?) ≤
T 2(f(x(0))− f(x?)) + ‖x(0)− x?‖22

(t+ T)2 .

Proof. The proof follows from φ̇(t) ≤ 0 (Theorem 4.29), implying φ(t) ≤ φ(0) and thereby

f(x(t))− f(x?) ≤
φ(0)

(t+ T)2 .

4.8.3 Continuous-time Approaches to Acceleration: Summary

In this section, we saw that some ordinary differential equations can be used for modelling
gradient and accelerated gradient-type methods. The corresponding convergence proofs
are much simpler, as they only involve using a single inequality, namely convexity between
two points: x(t) and x?. However, convergence speeds of continuous-time versions of
algorithms might not be representative of their behaviors, as the corresponding ODE
might be complicated to integrate, and as using numerical integration solvers might break
the potentially nice convergence properties of the continuous-time dynamics.

The content of this section is explored at length in many references, see e.g., (Su
et al., 2014; Krichene et al., 2015; Wibisono et al., 2016; Attouch et al., 2018). We discuss
a few extensions and limitations below, before concluding the section.

4.9. Notes and References 95

Integration methods and optimization. Continuous-time formulations of gradient-
based methods cannot be implemented as is on digital computers. Therefore, continuous-
time analyses cannot provide a complete picture on the topic without incorporating
numerical integration methods into the analyses. Another symptom of this incompleteness
is that of different optimization methods giving rise to the same limiting ODEs. For
instance, the same limiting ODE is obtained from Polyak’s heavy-ball, from Nesterov’s
accelerated methods, and from the triple momentum methods; see (Shi et al., 2021)
and (Sun et al., 2020).

This observation motivates different lines of works. In (Scieur et al., 2017b), the
authors focus on the gradient flow (4.27) and propose different integration methods for
recovering classical first-order methods in the quadratic minimization setup. In (Su et al.,
2014), it is shown that forward Euler integration of Nesterov’s ODE (4.28) leads to a
heavy-ball type method, close to Nesterov’s acceleration. In (Shi et al., 2019), the authors
obtain accelerated methods by integrating “high resolution” variants of the accelerated
ODEs via symplectic methods (partially implicit, and partially explicit integration rules).
Various discussions, developments, and connections between continuous-time systems and
their discrete counterparts are further presented in Diakonikolas and Orecchia (2019b),
Siegel (2019), and Sanz Serna and Zygalakis (2021).

Strongly convex ODEs. In the strongly convex case, limiting ODEs for “stationnary”
accelerated methods such as Nesterov’s method with constant momentum (Algorithm 15)
or triple momentum method (Algorithm 18) are also presented in different works; see,
e.g., (Shi et al., 2021; Sun et al., 2020).

Continuized methods. As previously discussed, it might not be simple to use classical
continuous-time methods on digital computers (nontrivial integration schemes must
be deployed). A family of so-called “continuized methods” are directly implementable
while keeping the benefits of the continuous-time approaches. Those methods rely on
randomized discretizations of the continuous-time process (Even et al., 2021).

4.9 Notes and References

Estimate sequences, potential functions, and differential equations. Potential func-
tions were already used in the original paper by Nesterov (1983) to develop accelerated
methods. Nesterov (2003) developed estimate sequences as an alternate, more construc-
tive, approach to obtaining optimal first-order methods. Since then, both approaches
have been used in many references on this topic, in a variety of settings. Tseng (2008)
provides a helpful unified view of accelerated methods. Estimate sequences have been
extensively studied by, e.g., Nesterov (2013), Baes (2009), Devolder (2011), and Kulun-
chakov and Mairal (2020). Another related approach is that of the approximate duality
gap Diakonikolas and Orecchia (2019b) which is a constructive approach to estimate
sequences/potential functions with a continuous-time counterpart.

96 Nesterov Acceleration

Beyond Euclidean geometries. Mirror descent dates back to the work of Nemirovsky
and Yudin (1983a). It has been further developed and used in many subsequent works (Ben-
Tal and Nemirovsky, 2001; Nesterov, 2005; Nesterov, 2009; Xiao, 2010; Juditsky and
Nesterov, 2014; Diakonikolas and Guzmán, 2021). Sound pedagogical surveys can be
found in (Beck and Teboulle, 2003; Juditsky and Nemirovsky, 2011a; Juditsky and
Nemirovsky, 2011b; Bubeck, 2015).

Beyond the setting described in this section, mirror descent has also been studied in
the relative smoothness setting, introduced by Bauschke et al. (2016)—see also (Teboulle,
2018)—, and extended to the notion of relative strong convexity by Lu et al. (2018).
However, acceleration remains an open issue in the context of relative smoothness
and relative strong convexity, and it is generally unclear which additional assumptions
allow accelerated rates. It is, however, clear that additional assumptions are required,
as emphasized by the lower bound provided by Dragomir et al. (2021). In particular,
accelerated schemes are known under an additional triangle scaling inequality (Hanzely
et al., 2021; Gutman and Peña, 2018).

Lower complexity bounds. Lower complexity bounds have been studied in a variety
of settings to establish limits on the worst-case performance of black-box methods. The
classical reference on this topic is the book by Nemirovsky and Yudin (1983c).

Of particular interest to us, Nemirovsky (1991) and Nemirovsky (1992) establish the
optimality of the Chebyshev and of the conjugate gradient methods for convex quadratic
minimization; see, also, a complete picture provided in the course notes by Nemirovsky
(1994). Lower bounds for black-box first-order methods in the context of smooth convex
and smooth strongly convex optimization can be found in (Nesterov, 2003). The final
lower bound for black-box smooth convex minimization was obtained by Drori (2017);
it demonstrates the optimality of the optimized gradient method, as well as that of
conjugate gradients, as discussed earlier in this section. Lower bounds for `p norms in
the mirror descent setup are constructed in Guzmán and Nemirovsky (2015), whereas a
lower bound for mirror descent in the relative smoothness setup is provided by Dragomir
et al. (2021).

Changing the performance measure. Obtaining (practical) accelerated method for
other types of convergence criteria, such as gradient norms, is still not a fully settled
issue. These criterion are important in other contexts, including dual methods, and can
be used to draw links between methods intrinsically designed to solve convex problems
and those used in nonconvex settings, where the goal is to find stationary points. There
are a few tricks that make it possible to pass from a guarantee in one context to another
one. For example, a regularization trick was proposed in (Nesterov, 2012b) that yields
approximate solutions with small gradient norm. Beyond that, in the context of smooth
convex minimization, recent progresses have been made by Kim and Fessler (2020), who
designed an optimized method for minimizing the gradient norm after a given number

4.9. Notes and References 97

of iterations. This method was analyzed through potential functions in (Diakonikolas
and Wang, 2021), and its geometric structure was further explored and exploited in (Lee
et al., 2021). Corresponding lower bounds, based on quadratic minimization, for a variety
of performance measures can be found in (Nemirovsky, 1992).

Adaptation and backtracking line-searches. The idea of using backtracking line-searches
is classical and is attributed to Goldstein (1962) and Armijo (1966); see also discussions
in (Nocedal and Wright, 2006; Bonnans et al., 2006). It was already incorporated in
the original work of Nesterov (1983) to estimate the smoothness constant within an
accelerated gradient method. Since then, many works on the topic have relied heavily on
this technique, which is often adapted to obtain better practical performance; see, for
example, (Scheinberg et al., 2014; Chambolle and Pock, 2016; Florea and Vorobyov, 2018;
Calatroni and Chambolle, 2019). A more recent adaptive step size strategy (without
line-search) can be found in (Malitsky and Mishchenko, 2020).

Numerical stability, inexactness, stochasticity, and randomness. The ability to use
approximate first-order information, be it stochastic or deterministic, is key for tackling
certain problems for which computing the exact gradient is expensive. Deterministic (or
adversarial) error models are studied in, e.g., (d’Aspremont, 2008; Schmidt et al., 2011;
Devolder et al., 2014; Devolder, 2013; Devolder et al., 2013; Aybat et al., 2020) through
different noise models. Such approaches can also be deployed when the projection/proximal
operation is computed approximately (Schmidt et al., 2011; Villa et al., 2013) (see also
Section 5 and the references therein).

Similarly, stochastic approximations and incremental gradient methods are key in
many statistical learning problems, where samples are accessed one at a time and for which
it is not desirable to optimize beyond the data accuracy (Bottou and Bousquet, 2007). For
this reason, the old idea of stochastic approximations (Robbins and Monro, 1951) is still
widely used and remains an active area of research. The “optimal” variants of stochastic
approximations were developed much later (Lan, 2008) with the rise of machine learning
applications. In this context, it is not possible to asymptotically accelerate convergence
rates but only to accelerate the transient phase toward a purely stochastic regime;
see also (Hu et al., 2009; Xiao, 2010; Devolder, 2011; Lan, 2012; Dvurechensky and
Gasnikov, 2016; Aybat et al., 2019; Gorbunov et al., 2020)—in particular, we note that
“stochastic” estimate sequences were developed in (Devolder, 2011; Kulunchakov and
Mairal, 2020). The case of stochastic noise arising from sampling an objective function
that is a finite sum of smooth components attracted substantial attention in the 2010s,
starting with (Schmidt et al., 2017; Johnson and Zhang, 2013; Shalev-Shwartz and
Zhang, 2013; Defazio et al., 2014a; Defazio et al., 2014b; Mairal, 2015) and was then
extended to feature acceleration techniques (Shalev-Shwartz and Zhang, 2014; Allen-Zhu,
2017; Zhou et al., 2018; Zhou et al., 2019). Acceleration techniques also apply in the
context of randomized block coordinate descent; see, for example, Nesterov (2012a), Lee
and Sidford (2013), Fercoq and Richtárik (2015), and Nesterov and Stich (2017).

98 Nesterov Acceleration

Higher-order methods. Acceleration mechanisms have also been proposed in the con-
text of higher-order methods. This line of work started with the cubic regularized
Newton method introduced in (Nesterov and Polyak, 2006) and its acceleration using
estimate sequence mechanisms (Nesterov, 2008); see also (Baes, 2009; Wilson et al.,
2021) and (Monteiro and Svaiter, 2013) (which we also discuss in the next section).
Optimal higher-order methods were presented by (Gasnikov et al., 2019). It was not clear
before the work of Nesterov (2019) that intermediate subproblems arising in the context
of higher-order methods were tractable. The fact that tractability is not an issue has
attracted significant attention to these methods.

Optimized methods. Optimized gradient methods were discovered by Kim and Fessler
(2016), based on the work by Drori and Teboulle (2014). Since then, optimized methods
have been studied in various settings: incorporating constraints/proximal terms (Kim and
Fessler, 2018b; Taylor et al., 2017a); optimizing gradient norms (Kim and Fessler, 2018c;
Kim and Fessler, 2020; Diakonikolas and Wang, 2021) (as an alternative to (Nesterov,
2012b)); adapting to unknown problem parameters using exact line-searches (Drori and
Taylor, 2020) or restarts (Kim and Fessler, 2018a); and in the strongly convex case (Van
Scoy et al., 2017; Cyrus et al., 2018; Park et al., 2021; Taylor and Drori, 2021). Such
methods have also appeared in the context of fixed-point iterations (Lieder, 2021) and
proximal methods (Kim, 2021; Barré et al., 2020a).

On obtaining proofs from this section. The worst-case performance of first-order
methods can often be computed numerically. This has been shown in (Drori and Teboulle,
2014; Drori, 2014; Drori and Teboulle, 2016; Taylor et al., 2017c) through the introduction
of performance estimation problems. Such techniques might be framed in different ways,
e.g., from a purely optimization-based point of view (Drori and Teboulle, 2014; Taylor
et al., 2017c) or from a control-theoretical perspective (Lessard et al., 2016; Fazlyab
et al., 2018). We provide a brief summary in the following lines with more details in
Appendix C.

The performance estimation approach was shown to provide tight certificates, from
which one can recover both worst-case certificates and matching worst-case problem
instances in (Taylor et al., 2017c; Taylor et al., 2017a). One consequence is that worst-case
guarantees for first-order methods such as those detailed in this section can always be
obtained as a weighted sum of the appropriate inequalities characterizing the problem
at hand; see, for instance, (De Klerk et al., 2017; Dragomir et al., 2021). A similar
approach framed in control theoretic terms, and originally tailored to obtain geometric
convergence rates, was developed by Lessard et al. (2016) and can also be used to form
potential functions (Hu and Lessard, 2017) as well as optimized methods such as the
triple momentum method (Van Scoy et al., 2017; Cyrus et al., 2018; Lessard and Seiler,
2020).

The proofs in this section were obtained by using the performance estimation approach
tailored for potential functions (Taylor and Bach, 2019) together with the performance

4.9. Notes and References 99

estimation toolbox (Taylor et al., 2017b). In particular, the potential function for the
optimized gradient method can be found in (Taylor and Bach, 2019, Theorem 11) (see
also (Taylor and Drori, 2021; Park et al., 2021)). These techniques can be used for to
either validate or rediscover the proofs in this section numerically, through semidefinite
programming. More details are provided in Appendix C.

For the purpose of reproducibility, we provide the corresponding code, as well as
notebooks for numerically and symbolically verifying the algebraic reformulations in this
section at https://github.com/AdrienTaylor/AccelerationMonograph.

https://github.com/AdrienTaylor/AccelerationMonograph

5
Proximal Acceleration and Catalysts

In this section, we present simple methods based on approximate proximal operations
that produce accelerated gradient-based methods. This idea is exploited for example
in the Catalyst (Lin et al., 2015; Lin et al., 2018) and Accelerated Hybrid Proximal
Extragradient (A-HPE) (Monteiro and Svaiter, 2013) frameworks. In essence, the idea
is to develop (conceptual) accelerated proximal point algorithms and to use classical
iterative methods to approximate the proximal point. In particular, these frameworks
produce accelerated gradient methods (in the same sense as Nesterov’s acceleration) when
the approximate proximal points are computed using linearly converging gradient-based
optimization methods.

5.1 Introduction

We review acceleration from the perspective of proximal point algorithms (PPA). The
key concept here, called proximal operation, dates back to the 1960s, with the works of
Moreau (1962; 1965). Its introduction to optimization is attributed to Martinet (1970;
1972) and was primarily motivated by its link with augmented Lagrangian techniques. In
contrast with previous sections, where information about the functions to be minimized
was obtained through their gradients, the following sections deal with the case in which
information is gathered through a proximal operator or an approximation of that operator.

The proximal point algorithm and its use in the development of optimization schemes
are surveyed in (Parikh and Boyd, 2014). We aim to go in a slightly different direction
here and describe the use of the PPA in an outer loop to obtain improved convergence
guarantees in the spirit of the Accelerated Hybrid Proximal Extragradient (A-HPE)
method (Monteiro and Svaiter, 2013) and of Catalyst (Lin et al., 2015; Lin et al., 2018).

100

5.2. Proximal Point Algorithm and Acceleration 101

In this section, we focus on the problem of solving

f? = min
x∈Rd

f(x), (5.1)

where f is closed, convex, and proper (it has a closed convex non-empty epigraph),
which we denote by f ∈ F0,∞ in line with Definition 4.1 from Section 4. We denote
by ∂f(x) the subdifferential of f at x ∈ Rd and by gf (x) ∈ ∂f(x) some element of the
subdifferential at x, irrespective of whether f is continuously differentiable. We aim to
find an ε-approximate solution x such that f(x)− f? ≤ ε.

It is possible to develop optimized proximal methods in the spirit of the optimized
gradient methods presented in Section 4. That is, given a computational budget—in the
proximal setting, this consists of a number of iterations and a sequence of step sizes—one
can choose the algorithmic parameters to optimize the worst-case performance. The
proximal equivalent to the optimized gradient method is Güler’s second method (Güler,
1992, Section 6) (see the discussions in Section 5.6). We do not spend time on this method
here and directly aim for methods designed from simple potential functions, in the same
spirit our approach to Nesterov’s accelerated gradient methods in Section 4.

5.2 Proximal Point Algorithm and Acceleration

Whereas the base method for minimizing a function using its gradient is gradient descent:

xk+1 = xk − λgf (xk),

the base method for minimizing a function using its proximal oracle is the proximal point
algorithm:

xk+1 = proxλf (xk), (5.2)
where the proximal operator is given by

proxλf (x) , argmin
y
{Φ(y;x) , λf(y) + 1

2‖y − x‖
2
2}.

The proximal point algorithm has a number of intuitive interpretations, with two of them
being particularly convenient for our purposes.

• Optimality conditions of the proximal subproblem reveal that a proximal step
corresponds to an implicit (sub)gradient method:

xk+1 = xk − λgf (xk+1),

where gf (xk+1) ∈ ∂f(xk+1).

• Using the proximal point algorithm is equivalent to applying gradient descent to
the Moreau envelope of f , where the Moreau envelope, denoted Fλ, is provided by

Fλ(x) , min
y
{f(y) + 1

2λ‖y − x‖
2
2}.

102 Proximal Acceleration and Catalysts

The Moreau envelope has the same set of optimal solutions as f , while enjoy-
ing attractive additional regularity properties (it is 1/λ-smooth and convex; see
Definition 4.1). More precisely, its gradient is given by

∇Fλ(x) =
(
x− proxλf (x)

)
/λ,

(see (Lemaréchal and Sagastizábal, 1997) for more details). This allows us to write

xk+1 = proxλf (xk) = xk − λ∇Fλ(xk),

and hence to write proximal minimization methods (as well as their inexact and
accelerated variants) applied to f as classical gradient methods (and their inexact
and accelerated variants) applied to Fλ.

In general, proximal operations are expensive, sometimes nearly as expensive as minimizing
the function itself. However, there are many cases, especially in the context of composite
optimization problems, where one can isolate parts of the objective for which proximal
operators actually have analytical solutions; see, e.g. (Chierchia et al., 2020) for a list of
such examples.

In the following sections, we start by analyzing such proximal point methods, and
then at the end of the section we show how proximal methods can be used in outer loops,
where proximal subproblems are solved approximately using a classical iterative method
(in inner loops). In particular, we describe how this combination produces accelerated
numerical schemes.

5.2.1 Convergence Analysis

Given the links between proximal operations and gradient methods, it is probably not
surprising that proximal point methods for convex optimization can be analyzed using
potential functions similar to those used for gradient methods.

However, there is a huge difference between gradient and proximal steps, as the latter
can be made arbitrarily “powerful” by taking large step sizes. In other words, a single
proximal operation can produce an arbitrarily good approximate solution by picking an
arbitrarily large step size. This contrasts with gradient descent, where large step sizes
make the method diverge. This fact is clarified later by Corollary 5.2. However, this nice
property of proximal operators comes at a cost: we may not be able to efficiently compute
the proximal step.

As emphasized by the next theorem, proximal point methods for solving (5.1) can be
analyzed by using similar potentials as those of gradient-based methods. We use

φk , Ak(f(xk)− f(x?)) + 1
2‖xk − x?‖

2
2 (5.3)

and show that φk+1 ≤ φk. As before, this type of reasoning can be used recursively:

AN (f(xN)− f(x?)) ≤ φN ≤ φN−1 ≤ . . . ≤ φ0 =A0(f(x0)− f(x?))

+ 1
2‖x0 − x?‖22,

(5.4)

5.2. Proximal Point Algorithm and Acceleration 103

thereby reaching bounds of the type f(xN)− f? ≤ 1
2AN ‖x0 − x?‖22 = O(A−1

N), assuming
A0 = 0. Since the convergence rates are dictated by the growth rate of the scalar sequence
{Ak}k, the proofs are designed to increase Ak as fast as possible.

Theorem 5.1. Let f ∈ F0,∞. For any k ∈ N, Ak, λk ≥ 0 and any xk, it holds that

Ak+1(f(xk+1)− f(x?)) + 1
2‖xk+1 − x?‖22

≤ Ak(f(xk)− f(x?)) + 1
2‖xk − x?‖

2
2,

with xk+1 = proxλkf (xk) and Ak+1 = Ak + λk.

Proof. We perform a weighted sum of the following valid inequalities originating from
our assumptions.

• Convexity between xk+1 and x? with weight λk:

f(x?) ≥ f(xk+1) + 〈gf (xk+1);x? − xk+1〉,

with some gf (xk+1) ∈ ∂f(xk+1).

• Convexity between xk+1 and xk with weight Ak:

f(xk) ≥ f(xk+1) + 〈gf (xk+1);xk − xk+1〉,

with the same gf (xk+1) ∈ ∂f(xk+1) as before.

By performing a weighted sum of these two inequalities with their respective weights, we
obtain the following valid inequality:

0 ≥λk [f(xk+1)− f(x?) + 〈gf (xk+1);x? − xk+1〉]
+Ak [f(xk+1)− f(xk) + 〈gf (xk+1);xk − xk+1〉] .

By matching the expressions term by term and by substituting xk+1 = xk − λkgf (xk+1),
one can easily check that the previous inequality can be rewritten exactly as

(Ak + λk)(f(xk+1)− f(x?)) + 1
2‖xk+1 − x?‖22

≤Ak(f(xk)− f(x?)) + 1
2‖xk − x?‖

2
2 − λk

2Ak + λk
2 ‖gf (xk+1)‖22.

By omitting the last term on the right hand-side (which is nonpositive), we reach the
desired statement.

The first proof of the following worst-case guarantee is due to Güler (1991) and
directly follows from the previous potential.

Corollary 5.2. Let f ∈ F0,∞, {λi}i≥0 be a sequence of nonnegative step sizes, and {xi}i≥0
be the sequence of iterates from the corresponding proximal point algorithm (5.2). For
all k ∈ N, k ≥ 1, it holds that

f(xk)− f? ≤
‖x0 − x?‖22
2∑k−1

i=0 λi
.

104 Proximal Acceleration and Catalysts

Proof. It follows directly from the potential with the choice A0 = 0. That is, we use the
potential φk defined in (5.3) with Theorem 5.1, which allows using the chaining argument
from (5.4). We obtain:

f(xk)− f(x?) ≤
1

2Ak
‖x0 − x?‖22,

where Ak = ∑k−1
i=0 λi and the claim directly follows.

Note again that we can make this bound arbitrarily good by simply increasing the
value of the λk. There is no contradiction here because the proximal oracle is massively
stronger than the usual gradient step, as previously discussed. However, solving even
a single proximal step is usually (nearly) as hard as solving the original optimization
problem, so the proximal method, as detailed here, is a purely conceptual algorithm.

Note that the choice of a constant step size λk = λ results in f(xN)− f? = O(N−1)
convergence, reminiscent of gradient descent. It turns out that as for gradient-based
optimization of smooth convex functions, it is possible to improve this result to O(N−2)
by using information from previous iterations. This idea was proposed by Güler (1992).
In the case of a constant step size λk = λ, one possible way to obtain this improvement
is to apply Nesterov’s method (or any other accelerated variant) to the Moreau envelope
of f . For varying step sizes, the corresponding bound has the form

f(xk)− f? ≤
2‖x0 − x?‖22(∑k−1

i=0
√
λi
)2 .

In addition, Güler’s acceleration is actually robust to computation errors (as described
in the next sections), while allowing for varying step size strategies.

These two key properties allow using Güler’s acceleration to design improved numerical
optimization schemes using

1. Approximate proximal steps, for example by approximately solving the proximal
subproblems via iterative methods; and

2. The step size λi’s can be increased from one iteration to the next, allowing for
arbitrarily fast convergence rates to be achieved (assuming that the proximal
subproblems can be solved efficiently).

It is important to note that the classical lower bounds for gradient-type methods do
not apply here, as we use the much stronger, and more expensive, proximal oracle.
It is therefore not a surprise that such techniques (i.e., increasing the step sizes λk
from iteration to iteration) might beat the O(N−2) bound obtained through Nesterov’s
acceleration. Such increasing step size rules can be used, for example, when solving the
proximal subproblem via Newton’s method, as proposed by Monteiro and Svaiter (2013).

5.3. Güler and Monteiro-Svaiter Acceleration 105

5.3 Güler and Monteiro-Svaiter Acceleration

In this section, we describe an accelerated version of the proximal point algorithm which
may involve inexact proximal evaluations. The method detailed below is a simplified
version, sufficient for our purposes, of that of Monteiro and Svaiter (2013), and we provide
a simple convergence proof for it. The method essentially boils down to that of Güler
(1992) when exact proximal evaluations are used (note that the inexact analysis of Güler
(1992) has a few gaps).

Before proceeding, we mention that there exist quite a few natural notions of inexact-
ness for proximal operations. In this section, we focus on approximately satisfying the
first-order optimality conditions of the proximal problem

xk+1 = argmin
x
{Φ(x; yk) , f(x) + 1

2λk
‖x− yk‖22}.

In other words, optimality conditions of the proximal subproblem are

0 = λkgf (xk+1) + xk+1 − yk,

for some gf (xk+1) ∈ ∂f(xk+1). In the following lines, we instead tolerate an error ek:

ek = λkgf (xk+1) + xk+1 − yk,

and require ‖ek‖2 to be small enough to guarantee convergence—even starting at an
optimal point does not imply staying at it, without proper assumptions on ek. One
possibility is to require ‖ek‖2 to be small with respect to the distance between the
starting point yk and the approximate solution to the proximal subproblem xk+1.

Formally, we use the following definition for an approximate solution with relative
inaccuracy 0 ≤ δ ≤ 1:

xk+1 ≈δ proxλkf (yk)⇐⇒

 ‖ek‖2 ≤ δ‖xk+1 − yk‖2
with ek , xk+1 − yk + λkgf (xk+1)
for some gf (xk+1) ∈ ∂f(xk+1)

 (5.5)

Intuitively, this notion allows for tolerance of relatively large errors when the solution
of the proximal subproblem is far from yk (meaning that yk is also far away from a
minimum of f), while demanding relatively small errors when approaching a solution. On
the other side, if yk is an optimal point for f , then so is xk+1, as shown by the following
proposition.

Proposition 5.1. Let yk ∈ argminx f(x). For any δ ∈ [0, 1] and any xk+1 ≈δ proxλkf (yk),
it holds that xk+1 ∈ argminx f(x).

Proof. We only consider the case δ = 1 since without loss of generality xk+1 ≈1
proxλkf (yk)⇒ xk+1 ≈δ proxλkf (yk) for any δ ∈ [0, 1]. By definition of xk+1, we have

‖xk+1 − yk + λkgf (xk+1)‖22 ≤ ‖xk+1 − yk‖22
⇔ 2λk〈gf (xk+1); xk+1 − yk〉 ≤ −λ2

k‖gf (xk+1)‖22, (5.6)

106 Proximal Acceleration and Catalysts

for some gf (xk+1) ∈ ∂f(xk+1). (The second inequality follows from base algebraic
manipulations of the first one.) In addition, optimality of yk implies that

〈gf (xk+1); xk+1 − yk〉 = 〈gf (xk+1)− gf (yk); xk+1 − yk〉 ≥ 0,

with gf (yk) = 0 ∈ ∂f(yk), where the second inequality follows from the convexity of f
(see, e.g., Section A). Therefore, condition (5.6) can be satisfied only when gf (xk+1) = 0,
meaning that xk+1 is a minimizer of f .

Now, assuming that it is possible to find an approximate solution to the proximal
operator, one can use Algorithm 23, originally from (Monteiro and Svaiter, 2013), to
minimize the convex function f . For simplicity, the parameters Ak, ak in the algorithm
are optimized for δ = 1; they can be slightly improved by exploiting the case 0 ≤ δ < 1.

Algorithm 23 An inexact accelerated proximal point method (Monteiro and Svaiter,
2013)
Input: A convex function f and an initial point x0.
1: Initialize z0 = x0 and A0 = 0.
2: for k = 0, . . . do
3: Pick ak = λk+

√
λ2
k
+4Akλk

2
4: Ak+1 = Ak + ak.

5: yk = Ak
Ak+akxk + ak

Ak+ak zk
6: xk+1 ≈δ proxλkf (yk) (see Eq. (5.5), for some δ ∈ [0, 1])
7: zk+1 = zk − akgf (xk+1)
8: end for

Output: Approximate solution xk+1.

Perhaps surprisingly, this method can be analyzed with the same potential as the
proximal point algorithm, despite the presence of computation errors.

Theorem 5.3. Let f ∈ F0,∞. For any k ∈ N, Ak, λk ≥ 0 and any xk, zk ∈ Rd, it holds
that

Ak+1(f(xk+1)− f(x?)) + 1
2‖zk+1 − x?‖22

≤ Ak(f(xk)− f(x?)) + 1
2‖zk − x?‖

2
2,

where xk+1 and zk+1 are generated by one iteration of Algorithm 23, and Ak+1 = Ak+ak.

Proof. We perform a weighted sum of the following valid inequalities, which stem from
our assumptions.

• Convexity between xk+1 and x? with weight Ak+1 −Ak:

f(x?) ≥ f(xk+1) + 〈gf (xk+1);x? − xk+1〉,

for some gf (xk+1) ∈ ∂f(xk+1), which we also use below.

5.3. Güler and Monteiro-Svaiter Acceleration 107

• Convexity between xk+1 and xk with weight Ak:

f(xk) ≥ f(xk+1) + 〈gf (xk+1);xk − xk+1〉.

• Error magnitude with weight (Ak+1)/(2λk):

‖ek‖22 ≤ ‖xk+1 − yk‖22,

which is valid for all δ ∈ [0, 1] in (5.5).

By performing the weighted sum of these three inequalities, we obtain the following valid
inequality:

0 ≥(Ak+1 −Ak) [f(xk+1)− f(x?) + 〈gf (xk+1);x? − xk+1〉]
+Ak [f(xk+1)− f(xk) + 〈gf (xk+1);xk − xk+1〉]

+ Ak+1
2λk

[
‖ek‖22 − ‖xk+1 − yk‖22

]
.

After substituting Ak+1 = Ak+ak, xk+1 = Ak/(Ak+ak)xk+ak/(Ak+ak)zk−λkgf (xk+1)+
ek and zk+1 = zk − akgf (xk+1), one can easily check that the previous inequality can be
rewritten as

(Ak + ak)(f(xk+1)− f(x?)) + 1
2‖zk+1 − x?‖22

≤Ak(f(xk)− f(x?)) + 1
2‖zk − x?‖

2
2

− λk(ak +Ak)− a2
k

2 ‖gf (xk+1)‖22,

either by comparing the expressions on a term-by-term basis or by using an appropriate
“complete the squares” strategy. We obtain the desired statement by enforcing λk(ak +
Ak)−a2

k ≥ 0, which allows us to neglect the last term on the right-hand side (which is then
nonpositive). Finally, since we have already assumed ak ≥ 0, requiring λk(ak+Ak)−a2

k ≥ 0
corresponds to

0 ≤ ak ≤
λk +

√
λ2
k + 4Akλk
2 ,

which yields the desired result.

The convergence speed then follows from the same reasoning as for the proximal point
method.

Corollary 5.4. Let f ∈ F0,∞, {λi}i≥0 be a sequence of nonnegative step sizes, and {xi}i≥0
be the corresponding sequence of iterates from Algorithm 23. For all k ∈ N, k ≥ 1, it
holds that

f(xk)− f? ≤
2‖x0 − x?‖22(∑k−1

i=0
√
λi
)2 .

108 Proximal Acceleration and Catalysts

Proof. Using the potential from Theorem 5.3:

φk , Ak(f(xk)− f(x?)) + 1
2‖zk − x?‖

2
2

with A0 = 0 as well as the chaining argument used in Corollary 5.2, we obtain

f(xk)− f? ≤
‖x0 − x?‖22

2Ak
.

The desired result then follows from

Ak+1 = Ak + ak = Ak +
λk +

√
λ2
k + 4Akλk
2 ≥ Ak + λk

2 +
√
Akλk.

Hence, Ak ≥
(√

Ak−1 + 1
2
√
λk−1

)2
≥ 1

4

(∑k−1
i=0
√
λi
)2
.

5.4 Exploiting Strong Convexity

In this section, we provide refined convergence results when the function to be minimized
is µ-strongly convex (all results from previous sections can be recovered by setting µ = 0).
The algebra is slightly more technical, but the message and techniques are the same.
While the proofs in the previous section can be seen as particular cases of the proofs
presented below, we detail both versions separately to alleviate the algebraic barrier as
much as possible.

Proximal point algorithm under strong convexity

We begin by refining the results on the proximal point algorithm. The same modification
to the potential function is used to incorporate acceleration in the sequel.

Theorem 5.5. Let f be a closed, µ-strongly convex and proper function. For any k ∈ N,
Ak, λk ≥ 0, any xk, and Ak+1 = Ak(1 + λkµ) + λk, it holds that

Ak+1(f(xk+1)− f(x?)) + 1 + µAk+1
2 ‖xk+1 − x?‖22

≤ Ak(f(xk)− f(x?)) + 1 + µAk
2 ‖xk − x?‖22,

with xk+1 = proxλkf (xk).

Proof. We perform a weighted sum of the following valid inequalities, which originate
from our assumptions.

• Strong convexity between xk+1 and x? with weight Ak+1 −Ak:

f(x?) ≥ f(xk+1) + 〈gf (xk+1);x? − xk+1〉+ µ

2 ‖x? − xk+1‖22,

with some gf (xk+1) ∈ ∂f(xk+1) which we further use below.

5.4. Exploiting Strong Convexity 109

• Convexity between xk+1 and xk with weight Ak:

f(xk) ≥ f(xk+1) + 〈gf (xk+1);xk − xk+1〉.

By performing the weighted sum of these two inequalities, we obtain the following valid
inequality:

0 ≥(Ak+1 −Ak)
[
f(xk+1)− f(x?) + 〈gf (xk+1);x? − xk+1〉

+ µ

2 ‖x? − xk+1‖22
]

+Ak [f(xk+1)− f(xk) + 〈gf (xk+1);xk − xk+1〉] .
By matching the expressions term by term and after substituting xk+1 = xk−λkgf (xk+1)
and Ak+1 = Ak(1+λkµ)+λk, one can check that the previous inequality can be rewritten
as

Ak+1(f(xk+1)− f(x?)) + 1 + µAk+1
2 ‖xk+1 − x?‖22

≤ Ak(f(xk)− f(x?)) + 1 + µAk
2 ‖xk − x?‖22

−λk
Ak(2 + λkµ) + λk

2 ‖gf (xk+1)‖22.

By neglecting the last term on the right-hand side (which is nonpositive), we reach the
desired statement.

To obtain the convergence speed guaranteed by the previous potential, we have to
characterize the growth rate of Ak again, observing that

Ak+1 ≥ Ak(1 + λkµ) = Ak

1− λkµ
1+λkµ

.

The following corollary contains our final worst-case guarantee for the proximal point
algorithm, which can be converted to its iteration complexity (details below).

Corollary 5.6. Let f be a closed, µ-strongly convex, and proper function with µ ≥ 0,
{λi}i≥0 be a sequence of nonnegative step sizes, and {xi}i≥0 be the corresponding sequence
of iterates from the proximal point algorithm. For all k ∈ N, k ≥ 1, it holds that

f(xk)− f? ≤
µ‖x0 − x?‖22

2(Πk−1
i=0 (1 + λiµ)− 1)

.

Proof. Note that the recurrence for Ak provided in Theorem 5.5 has a simple solution
Ak = ([Πk−1

i=0 (1 + λiµ)]− 1)/µ. By combining this with

f(xk)− f? ≤
‖x0 − x?‖22

2Ak
,

as provided by Theorem 5.5, and A0 = 0, we reach the desired statement.

110 Proximal Acceleration and Catalysts

As a particular case, note that we recover the case µ = 0 from the previous corollary
since Ak →

∑k−1
i=0 λi when µ goes to zero.

For arriving to the iteration complexity for obtaining an approximate solution xk
satisfying f(xk)− f? ≤ ε with constant step sizes λi = λ, we use the following sufficient
condition due to Corollary 5.6:

µ‖x0 − x?‖22
2(1 + λµ)k =

(
1− λµ

1 + λµ

)k µ‖x0 − x?‖22
2 ≤ ε ⇒ f(xk)− f? ≤ ε.

A few algebraic manipulations and taking logarithms allows obtaining the following
equivalent sufficient condition

k ≥
log

(
2ε

µ‖x0−x?‖2
2

)
log

(
1− λµ

1+λµ

) ⇒ f(xk)− f? ≤ ε.

Finally, using the bound log
(
1− 1

x

)
≤ − 1

x (for all x ∈ (1,∞)) we arrive to

k ≥ 1 + λµ

λµ
log

(
µ‖x0 − x?‖22

2ε

)
⇒ f(xk)− f? ≤ ε.

We conclude that the accuracy ε is therefore achieved in O
(

1+λµ
λµ log 1

ε

)
iterations of the

proximal point algorithm when the step size λk = λ is kept constant. This contrasts with
O
(

1
λε

)
in the non-strongly convex case.

Proximal acceleration and inexactness under strong convexity

To accelerate convergence while exploiting strong convexity, we upgrade Algorithm 23
to Algorithm 24, whose analysis follows the same lines as before. For simplicity, the
algorithm is optimized for δ =

√
1 + λkµ; it can be slightly improved by exploiting the

case 0 ≤ δ <
√

1 + λkµ. This method is a simplified version of the A-HPE method
of (Barré et al., 2021, Algorithm 5.1).

Algorithm 24 An inexact accelerated proximal point method
Input: A (µ-strongly) convex function f and an initial point x0.
1: Initialize z0 = x0 and A0 = 0.
2: for k = 0, . . . do
3: Pick Ak+1 = Ak + λk+2Akλkµ+

√
4A2

k
λkµ(λkµ+1)+4Akλk(λkµ+1)+λ2

k
2

4: yk = xk + (Ak+1−Ak)(Akµ+1)
Ak+1+2µAkAk+1−µA2

k
(zk − xk)

5: xk+1 ≈δ proxλkf (yk) (see Eq.(5.5), for some δ ∈ [0,
√

1 + λkµ])
6: zk+1 = zk + µ

Ak+1−Ak
1+µAk+1

(xk+1 − zk)− Ak+1−Ak
1+µAk+1

gf (xk+1)
7: end for

Output: Approximate solution xk+1.

5.4. Exploiting Strong Convexity 111

Theorem 5.7. Let f be a closed, µ-strongly convex, and proper function. For any k ∈ N
and Ak, λk ≥ 0, the iterates of Algorithm 24 satisfy

Ak+1(f(xk+1)− f(x?)) + 1 + µAk+1
2 ‖zk+1 − x?‖22

≤ Ak(f(xk)− f(x?)) + 1 + µAk
2 ‖zk − x?‖22.

Proof. We perform a weighted sum of the following valid inequalities, which originate
from our assumptions.

• Strong convexity between xk+1 and x? with weight Ak+1 −Ak:

f(x?) ≥ f(xk+1) + 〈gf (xk+1);x? − xk+1〉+ µ

2 ‖x? − xk+1‖22,

with some gf (xk+1) ∈ ∂f(xk+1), where this particular subgradient is used repeti-
tively below.

• Strong convexity between xk+1 and xk with weight Ak
f(xk) ≥ f(xk+1) + 〈gf (xk+1);xk − xk+1〉+ µ

2 ‖xk − xk+1‖22.

• Error magnitude with weight Ak+1+2µAkAk+1−µA2
k

2λk(1+µAk+1) :

‖ek‖22 ≤ (1 + λkµ)‖xk+1 − yk‖22,
which is valid for all δ ∈ [0,

√
1 + λkµ] in (5.5).

By performing a weighted sum of these three inequalities, with their respective weights,
we obtain the following valid inequality:

0 ≥(Ak+1 −Ak)
[
f(xk+1)− f(x?) + 〈gf (xk+1);x? − xk+1〉

+ µ

2 ‖x? − xk+1‖22
]

+Ak

[
f(xk+1)− f(xk) + 〈gf (xk+1);xk − xk+1〉+ µ

2 ‖xk − xk+1‖22
]

+ Ak+1 + 2µAkAk+1 − µA2
k

2λk(1 + µAk+1) [‖ek‖22 − (1 + λkµ)‖xk+1 − yk‖22].

By matching the expressions term by term and by substituting the expressions for yk,
xk+1 = yk − λkgf (xk+1) + ek, and zk+1, one can check that the previous inequality can
be rewritten as (we advise against substituting Ak+1 at this stage):

Ak+1(f(xk+1)− f(x?)) + 1 + µAk+1
2 ‖zk+1 − x?‖22

≤ Ak(f(xk)− f(x?)) + 1 + µAk
2 ‖zk − x?‖22

−(Ak+1 + 2µAkAk+1 − µA2
k)λk − (Ak+1 −Ak)2

1 + µAk+1

1
2‖gf (xk+1)‖22

−Ak(Ak+1 −Ak)(1 + µAk)
Ak+1 + 2µAkAk+1 − µA2

k

µ

2 ‖xk − zk‖
2
2.

112 Proximal Acceleration and Catalysts

The conclusion follows from Ak+1 ≥ Ak which allows us to discard the last term (which
is then nonpositive). Positivity of the first residual term can be enforced by choosing
Ak+1 such that

(Ak+1 + 2µAkAk+1 − µA2
k)λk − (Ak+1 −Ak)2 ≥ 0.

The desired result is achieved by specifically choosing the largest root of the second-order
polynomial in Ak+1, such that Ak+1 ≥ Ak.

In contrast with the previous proximal point algorithm, this accelerated version
requires

O

(√
1+λµ
λµ log 1

ε

)
inexact proximal iterations to reach f(xk)− f(x?) ≤ ε when using a constant step size
λk = λ. This follows from characterizing the growth rate of the sequence {Ak}k:

Ak+1 ≥ Ak(1 + λkµ) +Ak

√
λkµ(1 + λkµ) = Ak

1−
√

λkµ
1+λkµ

. (5.7)

Corollary 5.8. Let f ∈ Fµ,∞ with µ ≥ 0, {λi}i≥0 be a sequence of nonnegative step sizes,
and {xi}i≥0 be the corresponding sequence of iterates from Algorithm 24. For all k ∈ N,
k ≥ 1, it holds that

f(xk)− f? ≤ Πk−1
i=1

(
1−

√
λiµ

1+λiµ

) ‖x0 − x?‖22
2λ0

.

Proof. The proof follows from the same arguments as before; that is,

f(xk)− f? ≤
‖x0 − x?‖22

2Ak
,

and
Ak ≥

λ0

Πk−1
i=1

(
1−

√
λiµ

1+λiµ

) ,
where we used A0 = 0 and A1 = λ0. We then proceed with (5.7).

Before continuing to the next section, we note that combining Corollary 5.4 with
Corollary 5.8 shows that

f(xk)− f? ≤ min


Πk−1
i=1

(
1−

√
λiµ

1+λiµ

)
λ0

,
4(∑k−1

i=0
√
λi
)2

 ‖x0 − x?‖22
2 .

5.5 Application: Catalyst Acceleration

In what follows, we illustrate how to use proximal methods as meta-algorithms to improve
the convergence of simple gradient-based first-order methods. The idea consists of using

5.5. Application: Catalyst Acceleration 113

a base first-order method, such as gradient descent, to obtain approximations to the
proximal point subproblems, within an accelerated proximal point method. This idea can
be extended by embedding any algorithm that can solve the proximal subproblem.

There exist many notions of approximate solutions to the proximal subproblems,
giving rise to different types of guarantees together with slightly different methods. In
particular, we required the approximate solution to have a small gradient. Other notions
of approximate solutions are used, among others, in (Güler, 1992; Schmidt et al., 2011;
Villa et al., 2013). Depending on the target application or on the target algorithm for
solving inner problems, the natural notion of an approximate solution to the proximal
subproblem might change. A fairly general framework was developed by Monteiro and
Svaiter (2013) (where the error is controlled via a primal-dual gap on the proximal
subproblem).

5.5.1 Catalyst acceleration

A popular application of the inexact accelerated proximal gradient is Catalyst acceleration
(Lin et al., 2015). For readability purposes, we do not present the general Catalyst
framework but rather a simple instance. Stochastic versions of this acceleration procedure
have also been developed, and we briefly summarize them in Section 5.5.4. The idea is
again to use a base first-order method to approximate the proximal subproblem up to the
required accuracy. For now, we assume that we want to minimize an L-smooth convex
function f , i.e.,

min
x∈Rd

f(x),

The corresponding proximal subproblem has the form

proxλf (y) , argmin
x

(
f(x) + 1

2λ‖x− y‖
2
2

)
, (5.8)

and it is therefore the minimization of an (L + 1/λ)-smooth and 1/λ-strongly convex
function. To solve such a problem, one can use a first-order method to approximate its
solution.

Preliminaries

In what follows, we consider using a methodM to solve the proximal subproblem (5.8).
We assume that this method is guaranteed to converge linearly on any smooth strongly
convex problem with minimizer w?, and more precisely that:

‖wk − w?‖2 ≤ CM(1− τM)k‖w0 − w?‖2 (5.9)

(where {wi}i are the iterates ofM) for some constant CM ≥ 0 and some 0 < τM ≤ 1.
Note that we consider linear convergence in terms of ‖wk − w?‖2 for convenience; other
notions can be used, such as convergence in function values.

We distinguish the sequences {xk}k, {yk}k, and {zk}k, which are the iterates of the
inexact accelerated proximal point algorithm (Algorithm 23, or 24), and the sequence of

114 Proximal Acceleration and Catalysts

iterates {w(k)
i }i, which are the iterates ofM, used to approximate proxλf (yk) in step 6 of

Algorithm 23 (or step 5 of Algorithm 24). We also use the warm-start strategy w(k)
0 = yk.

We can thus apply Algorithm 23 to minimize f while (approximately) solving the
proximal subproblems withM. We first define four iteration counters:

1. Nouter, the number of iterations of the inexact accelerated proximal point method
(Algorithm 23, or 24), which serves as the “outer loop” for the overall acceleration
scheme. That is, the output of the overall method is xNouter in the notation of
Algorithm 23 (or Algorithm 24);

2. Ninner(k), the number of iterations needed by methodM to approximately solve
the proximal subproblem at iteration k of the outer loop of the inexact proximal
point method. That is, the number of iterations ofM for approximating proxλf (yk)
to the target accuracy, when the initial iterate ofM is set to w(k)

0 = yk;

3. Nuseless, the number of iterations performed byM that did not result in an additional
iteration of the inexact accelerated proximal point method. That is, if the user has
a limited budget in terms of a total number of iterations forM, it is likely that
the last few iterations of M do not allow completing an iteration of the “outer
loop”. Thus, Nuseless < Ninner(Nouter), i.e., the number of useless iterations ofM is
smaller than the number of iterations that would have lead to an additional outer
iteration.

4. Ntotal, the total number of iterations of methodM:

Ntotal = Nuseless +
Nouter−1∑
k=0

Ninner(k).

Again, Nuseless is the number of iterations ofM that did not allow an additional
outer iteration to complete.

Overall complexity

As we detail in the sequel, assuming thatM satisfies (5.9), the overall complexity of the
combination of methods is guaranteed to be

f(xNouter)− f? = O(N−2
total),

where xNouter is the iterate produced after Nouter iterations of the inexact accelerated
proximal point method or equivalently, the iterate produced after a total number of
iterations Ntotal of methodM. More precisely, xNouter is guaranteed to satisfy

f(xNouter)− f(x?) ≤
2‖x0 − x?‖22
λN2

outer
≤ 2‖x0 − x?‖22
λbB−1

M,λNtotalc2
,

(the first inequality follows from Corollary 5.4 and the second one from the analysis
below) where we used Ninner(k) ≤ BM,λ for all k ≥ 0 and hence bNtotal

BM,λ
c ≤ Nouter, where

5.5. Application: Catalyst Acceleration 115

the constant BM,λ depends solely on the choice of λ and on properties ofM. This BM,λ

represents the computational burden of approximately solving one proximal subproblem
withM, and it satisfies

BM,λ ≤
log(CM(λL+ 2))

τM
+ 1.

We provide a few simple examples based on gradient methods for smooth strongly
convex minimization. For all these methods, the embedding within the inexact proximal
framework yields

Ntotal = O

(
BM,λ

√
L‖x0−x?‖2

2
ε

)
(5.10)

iteration complexity in terms of the total number of calls to M to find a point that
satisfies f(xNouter)− f(x?) ≤ ε. We can make this bound a bit more explicit depending
on the choice ofM.

• LetM be a regular gradient method with step size 1/(L+ 1/λ) that we use to solve
the proximal subproblem. The method is known to converge linearly with CM = 1
and τM = 1

1+λL (the inverse condition ratio for the proximal subproblem), and it
produces the accelerated rate in (5.10). Note that directly applying the gradient
method to the problem of minimizing f yields a much worse iteration complexity:
O
(
L‖x0−x?‖2

2
ε

)
.

• LetM be a gradient method including an exact line-search. It is guaranteed to
converge linearly with CM = λL+1 (the condition ratio of the proximal subproblem)
and τM = 2

2+λL . The iteration complexity of applying this steepest descent scheme
directly to f is similar to that of vanilla gradient descent. One can also choose λ to
avoid having an excessively large BM,λ; for example, λ = 1/L.

• LetM be an accelerated gradient method specifically tailored for smooth strongly
convex optimization, such as Nesterov’s method with constant momentum; see
Algorithm 16. It is guaranteed to converge linearly with CM = λL+ 1 and τM =√

1
1+λL . Although there is no working guarantee for this method on the original

minimization problem, if f is not strongly convex, it can still be used to minimize
f through the inexact proximal point framework, as proximal subproblems are
strongly convex.

To conclude, inexact accelerated proximal schemes produce accelerated rates for vanilla
optimization methods that converge linearly for smooth strongly convex minimization.
The idea of embedding a simple first-order method within an inexact accelerated scheme
can be applied to a large array of settings, including to obtain acceleration in strongly
convex problems or for stochastic minimization (see below). However, one should note
that practical tuning of the corresponding numerical schemes (and particularly of the step
size parameters) critically affects the overall performance, as discussed in, e.g., (Lin et al.,
2018). This makes effective implementation somewhat tricky. The analysis of non-convex

116 Proximal Acceleration and Catalysts

settings is beyond the scope of this section, but examples of such results can be found in,
e.g., (Paquette et al., 2018).

5.5.2 Detailed Complexity Analysis

Recall that function value accuracies, e.g., in Corollary 5.4 are expressed in terms of outer
loop iterations. Therefore, to complete the analysis, we need to answer the following
question: given a total budget of Ntotal inner iterations of methodM, how many iterations
of Algorithm 23, Nouter, will we perform in the ideal strategy (in other words, what is
BM,λ)? To answer this question, we start by analyzing the computational cost of solving
a single proximal subproblem throughM.

Computational cost of inner problems. Let

Φk(x) , f(x) + 1
2λ‖x− yk‖

2
2

be the objective of the proximal subproblem that we aim to solve at iteration k (line
6 of Algorithm 23) centered at yk. By construction, Φk(x) is (L + 1/λ)-smooth and
1/λ-strongly convex. Also denote by w0 = yk our (warm-started) initial iterate and by
w0, w1, . . . , wNinner(k) the iterates ofM used to solve minx Φk(x) (note that we drop the
superscript (k) for readability, avoiding the heavier notation w(k)

0 , w
(k)
1 , . . . , w

(k)
Ninner(k)).

We also denote w?(Φk) , argminx Φk(x).
We need to compute an upper bound on the number of iterations Ninner(k) required

to satisfy the error criterion (5.5):

‖eNinner(k)‖2 = λ‖∇Φk(wNinner(k))‖2 ≤ ‖wNinner(k) − w0‖2, (5.11)

where we denote by Ninner(k) = inf{i : ‖∇Φk(wi)‖2 ≤ 1/λ‖wi − w0‖2} the index of the
first iteration such that (5.11) is satisfied: this is precisely the quantity we want to upper
bound. We start with the following observations:

• By (L+ 1/λ)-smoothness of Φk, we have

‖∇Φk(wi)‖2 ≤ (L+ 1/λ)‖wi − w?(Φk)‖2, (5.12)

where w?(Φk) is the minimizer of Φk.

• The triangle inequality applied to ‖w0 − w?(Φk)‖2 implies

‖w0 − w?(Φk)‖2 − ‖wi − w?(Φk)‖2 ≤ ‖w0 − wi‖2. (5.13)

Hence, (5.11) is satisfied if the right-hand side of (5.12) is smaller than the left-hand side
of (5.13) divided by λ. Thus, for any i for which we can prove

(L+ 1/λ)‖wi − w?(Φk)‖2 ≤ 1/λ(‖w0 − w?(Φk)‖2 − ‖w?(Φk)− wi‖2),

5.5. Application: Catalyst Acceleration 117

we obtain Ninner(k) ≤ i. Rephrasing this inequality leads to

‖wi − w?(Φk)‖2 ≤
1

λL+ 2‖w0 − w?(Φk)‖2.

Therefore, by assumption onM, (5.11) is guaranteed to hold as soon as

CM(1− τM)i ≤ 1
λL+ 2 ,

and thus (5.11) holds for any i that satisfies

i ≥
⌈ log (CM(λL+ 2))

log (1/(1− τM))

⌉
.

We conclude that (5.11) is satisfied before this number of iterations is achieved; hence,

Ninner(k) ≤
⌈ log (CM(λL+ 2))

log (1/(1− τM))

⌉
≤ log (CM(λL+ 2))

log (1/(1− τM)) + 1.

Given that the right-hand side does not depend on k, we use the notation

BM,λ ,
log (CM(λL+ 2))
log (1/(1− τM)) + 1

as our upper bound on the iteration cost of solving the proximal subproblem viaM.

Global complexity bound. We have shown that the number of iterations in the inner loop
is bounded above by a constant that depends on the specific choice of the regularization
parameter and on the methodM. In other words, Ninner(k) ≤ BM,λ. Denoting by Ntotal
the total number of calls to the gradient of f , by Nouter the number of iterations performed
by Algorithm 23, and by Nuseless the number of iterations ofM that did not result in an
additional outer iteration (see discussions in Section 5.5.1 “Preliminaries”), we conclude
that

Ntotal = Nuseless +
Nouter−1∑
k=0

Ninner(k) < (Nouter + 1)BM,λ.

Hence, Nouter ≥ bB−1
M,λNtotalc since Nuseless < BM,λ (the number of useless iterations is

smaller than the number of iterations that would lead to an additional outer iteration).
The conclusion follows from Corollary 5.4:

f(xNouter)− f(x?) ≤
2‖x0 − x?‖22
λN2

outer
≤ 2‖x0 − x?‖22
λbB−1

M,λNtotalc2
.

That is, given a target accuracy ε, the iteration complexity written in terms of the total
number of approximate proximal minimizations in Algorithm 23 is O(

√
‖x0−x?‖2

2
λε), and

the total iteration complexity when solving the problem usingM in the inner loops is
simply the same bound multiplied by the cost of solving a single proximal subproblem,
namely O(BM,λ

√
‖x0−x?‖2

2
λε).

118 Proximal Acceleration and Catalysts

5.5.3 Catalyst for Strongly Convex Problems

The previous analysis holds for the convex (but not necessarily strongly convex) case.
The iteration complexity of solving inner problem remains valid in the strongly convex
case, and the expression for BM,λ can only be improved slightly—by taking into account
the better strong convexity parameter µ+ 1/λ and the possibly larger acceptable error
magnitude with the factor

√
1 + λµ in Algorithm 24. Therefore, the total number of

iterations of Algorithm 24 embedded withM remains bounded in a similar fashion, and
the overall error decreases as

(
1−

√
λµ

1+λµ

)bNouter/BM,λc
, and the iteration complexity is

therefore of order

O

(
BM,λ

√
1 + λµ

λµ
log 1

ε

)
. (5.14)

It is thus natural to choose the value of λ by optimizing the overall iteration complexity
of Algorithm 24 combined withM. One way to proceed is by optimizing√

1 + λµ

λµ

/
τM ,

essentially neglecting the factor log(CM(λL+ 2)) in the complexity estimate (5.14). Here
are a few examples:

• Gradient method with suboptimal tuning (e.g., when using backtracking or line-
search techniques): τM = µλ+1

Lλ+1 . Optimizing the ratio leads to the choice λ = 1
L−2µ ,

and the ratio is equal to 2
√

L
µ − 1. Assuming CM = 1 (which is the case for the

standard step size 1/L), the overall iteration complexity is then O
(√

L
µ log 1

ε

)
,

where we neglected the factor log(2 1−µ/L
1−2µ/L) ≈ log 2 when L/µ is large enough.

• Gradient method with optimal tuning: τM = 2(µλ+1)
(Lλ+µλ+2) . The resulting choice is

λ = 2
L−3µ and the ratio is

√
2
√

L
µ − 1, thereby arriving at the same O

(√
L
µ log 1

ε

)
.

5.5.4 Catalyst for Randomized/Stochastic Methods

Similar results hold for stochastic methods, assuming the convergence ofM in expectation
instead of (5.9), such as in the form E‖wk − w?‖2 ≤ CM(1− τM)k‖w0 − w?‖2. Overall,
the idea remains the same:

1. Use the inexact accelerated proximal point algorithm (Algorithm 23 or 24) as ifM
were deterministic.

2. Use the stochastic methodM to obtain points that satisfy the accuracy requirement.

Dealing with the computational burden of solving the inner problem is a bit more
technical, but the overall analysis remains similar. One can bound the expected number

5.6. Notes and References 119

of iterations needed to solve the inner problem E[Ninner(k)] by some constant B(stoch)
M,λ of

the form (details below)

B
(stoch)
M,λ ,

log (CM(λL+ 2))
log (1/(1− τM)) + 2,

which is simply B(stoch)
M,λ = BM,λ + 1. A simple argument for obtaining this bound uses

Markov’s inequality as follows:

P(Ninner(k) > i) ≤ P
(
‖wi − w?(Φk)‖2 > 1

λL+2‖w0 − w?(Φk)‖2
)

≤ E[‖wi − w?(Φk)‖2]
1

λL+2‖w0 − w?(Φk)‖2
(Markov)

≤ C(1− τ)i‖w0 − w?(Φk)‖2
1

λL+2‖w0 − w?(Φk)‖2
= C(1− τ)i

1
λL+2

.

We then use a refined version of this bound: P(Ninner(k) > i) ≤ min
{
1, (λL+ 2)C(1− τ)i

}
,

and in order to bound E[Ninner(k)], we proceed with

E[Ninner(k)] =
∞∑
t=1

P(Ninner(k) ≥ t)

≤
∫ N0

0
1dt+ C(λL+ 2)

∫ ∞
N0

(1− τ)tdt,

where N0 is such that 1 = C(λL+ 2)(1− τ)N0 . Direct computation yields E[Ninner(k)] ≤
B

(stoch)
M,λ , N0 + 1.
The overall expected iteration complexity is that of the inexact accelerated proximal

point method multiplied by the expected computational burden of solving the proximal
subproblems B(stoch)

M,λ . That is, the expected iteration complexity becomes

O

B(stoch)
M,λ

√
‖x0 − x?‖22

λε


in the smooth convex setting, and

O

(
B

(stoch)
M,λ

√
1 + λµ

λµ
log 1

ε

)
in the smooth strongly convex setting. The main argument of this section, namely the
use of Markov’s inequality, was adapted from Lin et al. (2018, Appendix B.4) (merged
with the arguments for the deterministic case above). Stochastic versions of Catalyst
acceleration were also studied in (Kulunchakov and Mairal, 2019).

5.6 Notes and References

In the optimization literature, the proximal operation is an essential algorithmic primitive
at the heart of many practical optimization methods. Proximal point algorithms are also

120 Proximal Acceleration and Catalysts

largely motivated by the fact that they offer a nice framework for obtaining “meta” (or
high-level) algorithms. They naturally appear in augmented Lagrangian and splitting-
based numerical schemes, among others. We refer the reader to the excellent surveys in
(Parikh and Boyd, 2014; Ryu and Boyd, 2016) for more details.

Proximal point algorithms: accelerated and inexact variants. Proximal point algo-
rithms have a long history, dating back to the works of Moreau (1962; 1965): they were
introduced to the optimization community by Martinet (1970; 1972). Early interest in
proximal methods was motivated by their connection to augmented Lagrangian tech-
niques (Rockafellar, 1973; Rockafellar, 1976; Iusem, 1999); see also the helpful tutorial
by Eckstein and Silva (2013)). Among the many other successes and uses of proximal
operations, one can cite the many splitting techniques (Lions and Mercier, 1979; Eckstein,
1989), for which there are sound surveys (Boyd et al., 2011; Eckstein and Yao, 2012;
Condat et al., 2019). In this context, inexact proximal operations had already been intro-
duced by Rockafellar (1976) and were combined with acceleration much later by Güler
(1992)—although not with a perfectly rigorous proof, which was later corrected in (Salzo
and Villa, 2012; Monteiro and Svaiter, 2013).

Hybrid proximal extragradient (HPE) framework. Whereas Catalyst acceleration is
based on the idea of solving the proximal subproblem via a first-order method, the
(related) hybrid proximal extragradient framework is also used together with a Newton
scheme in (Monteiro and Svaiter, 2013). Furthermore, the accelerated hybrid proximal
extragradient framework allows for an increasing sequence of step sizes, thereby leading
to faster rates than those obtained via vanilla first-order methods. (That is, using an
increasing sequence of {λi}i, (∑N

i=1
√
λi)2 might grow much faster than N2.)

The HPE framework was introduced by Solodov and Svaiter (1999; 1999; 2000; 2001)
before it was embedded with acceleration techniques by (Monteiro and Svaiter, 2013).

Catalyst. The variant presented in this section was chosen for simplicity of exposition;
it is largely inspired by recent works on the topic in (Lin et al., 2018; Ivanova et al., 2019)
along with (Monteiro and Svaiter, 2013). Efficient implementations of Catalyst can be
found in the Cyanure package by Mairal (2019). In particular, most efficient practical
implementations of Catalyst appear to rely on an absolute inaccuracy criterion for the
inexact proximal operation, instead of on relative (or multiplicative) ones, as used in
this section. In practice, the most convenient and efficient variants appear to be those
that use a constant number of inner loop iterations to approximately solve the proximal
subproblems.

In this section, we chose the relative error model as we believe it allows for a slightly
simpler exposition while relying on essentially the same techniques. Catalyst was originally
proposed by Lin et al. (2015) as a generic tool for reaching accelerated methods. Among
others, it allowed for the acceleration of stochastic methods such as SVRG (Johnson and

5.6. Notes and References 121

Zhang, 2013), SAGA (Defazio et al., 2014a), MISO (Mairal, 2015), and Finito (Defazio et
al., 2014b) before direct acceleration techniques had been developed for them (Allen-Zhu,
2017; Zhou et al., 2018; Zhou et al., 2019).

Higher-order proximal subproblems. Higher-order proximal subproblems of the form

min
x

{
f(x) + 1

λ(p+ 1)‖x− xk‖
p+1
2

}
(5.15)

were used by (Nesterov, 2020a; Nesterov, 2020b) as a new primitive for designing
optimization schemes. These subproblems can also be solved approximately (via pth-order
tensor methods (Nesterov, 2019)) while maintaining good convergence guarantees.

Optimized proximal point methods. It is possible to develop optimized proximal
methods in the spirit of optimized gradient methods. That is, given a computational
budget—in the proximal setting, this consists of a number of iterations and a sequence of
step sizes {λi}0≤i≤N−1—one can choose algorithmic parameters to optimize the worst-case
performance of a method of the type

xk+1 = x0 −
k∑
i=1

βigf (xi)− λkgf (xk+1)

with respect to the βi. The proximal equivalent of the optimized gradient method is Güler’s
second method (Güler, 1992, Section 6), which was obtained as an optimized proximal
point method in (Barré et al., 2020a). Alternatively, Güler’s second method (Güler, 1992,
Section 6) can be obtained by applying the optimized gradient method (without its
last iteration trick) to the Moreau envelope of the nonsmooth convex function f . More
precisely, denoting by f̃ the Moreau envelope of f , one can apply the optimized gradient
method without the last iteration trick to f̃ as f(xk)− f? = f̃(xk)− f̃? − 1

2L‖gf̃ (xk)‖22,
which corresponds precisely to the first term of the potential of the optimized gradient
method (see Equation 4.9). In the more general setting of monotone inclusions, one can
obtain alternate optimized proximal point methods for different criteria as in (Kim, 2021;
Lieder, 2021).

Proofs in this section. The proofs of the potential inequalities in this section were
obtained through the performance estimation methodology, introduced by Drori and
Teboulle (2014) and specialized to the study of inexact proximal operations by Barré
et al. (2020a). More details can be found in Section 4.9, “On obtaining the proofs
of this section” and in Appendix C. In particular, for reproducibility purposes, we
provide code for symbolically verifying the algebraic reformulations of this section
at https://github.com/AdrienTaylor/AccelerationMonograph together with those of
Section 4.

https://github.com/AdrienTaylor/AccelerationMonograph

6
Restart Schemes

In this section, we show that restart strategies can improve the performance of accelerated
schemes when the objective function satisfies very generic Hölderian error bounds (HEB)
which generalize the notion of strong convexity, but only need to hold locally around
the optimum. Restart schemes provide a convenient way to render standard first-order
methods adaptive to the HEB parameters, and we will see that the cost of adaptation is
only logarithmic.

6.1 Introduction

First-order methods typically exhibit a sublinear convergence, whose rate varies with
gradient smoothness. The polynomial upper complexity bounds are typically convex
functions of the number of iterations, so first-order methods converge faster in the
beginning, then convergence tails off as iterations progress. This suggests that periodically
restarting first-order methods, i.e., simply running more “early” iterations, could accelerate
their convergence. We illustrate this concept in Figure 6.1.

Beyond this graphical argument, all accelerated methods have memory and look
back at least one step to compute the next iterate. They iteratively form a model for
the function around the optimum, and restarting allows this model to be periodically
refreshed, thereby discarding outdated information as the algorithm converges towards
the optimum.

While the benefits of restart are immediately apparent in Figure 6.1, restart schemes
raise several important questions: How many iterations should we run between restarts?
What is the best complexity bound we can hope for using a restart scheme? What
regularity properties of the problem drive the performance of restart schemes? Fortunately,
all these questions have an explicit answer that stems from a simple and intuitive argument.
We will see that restart schemes are also adaptive to unknown regularity constants and

122

6.1. Introduction 123

f
−
f ?

f
−
f ?

Iterations Iterations

Figure 6.1: Left: Sublinear convergence plot without restart. Right: Sublinear convergence plot with
restart.

often reach near optimal convergence rates without observing these parameters.
We begin by illustrating this adaptivity on the problem of minimizing a strongly

convex function using the fixed step gradient method.

6.1.1 The Strongly Convex Case

We illustrate the main argument of this section when minimizing a strongly convex
function using fixed step gradient descent. Suppose we seek to solve the minimization
problem

min
x∈Rd

f(x) (6.1)

Suppose that the gradient of f is Lipschitz continuous with constant L with respect to
the Euclidean norm;

‖∇f(y)−∇f(x)‖2 ≤ L‖y − x‖2, for all x, y ∈ Rd. (6.2)

We can use the fixed step gradient method to solve problem (6.1), as in Algorithm 25
below.

Algorithm 25 Gradient Method
Input: A smooth convex function f and an initial point x0.
1: for k = 0, . . . do
2: xk+1 = xk − 1

L∇f(xk)
3: end for

Output: An approximate solution xk+1.

The smoothness assumption in (6.2) ensures the complexity bound

f(xk)− f? ≤
2L‖x0 − x?‖22

k + 4 (6.3)

124 Restart Schemes

after k iterations (see Section 4 for a complete discussion).
Assume now that f is also strongly convex with parameter µ, with respect to the

Euclidean norm. Strong convexity means that f satisfies
µ

2 ‖x− x?‖
2
2 ≤ f(x)− f?, (6.4)

where x? is an optimal solution to problem (6.1), and f? is the corresponding optimal
objective value. Denote by A(x0, k) the output of k iterations of Algorithm 25 started
at x0, and suppose that we periodically restart the gradient method according to the
following scheme.

Algorithm 26 Restart scheme
Input: A smooth convex function f , an initial point x0 and an inner optimization

algorithm A(x, k).
1: for i = 0, . . . , N − 1 do
2: Obtain xi+1 by running ki iterations of the gradient method, starting at xi, i.e.

xi+1 = A(xi, ki)

3: end for
Output: An approximate solution xN .

Combining the strong convexity bound in (6.4) with the complexity bound in (6.3)
yields

f(xi+1)− f? ≤
2L‖xi − x?‖22

k + 4 ≤ 4L
µ(k + 4)(f(xi)− f?) (6.5)

after an iteration of the restart scheme in Algorithm 26 in which we run k (inner)
iterations of the gradient method in Algorithm 25. This means that if we set

ki = k =
⌈8L
µ

⌉
,

then
f(xN)− f? ≤

(1
2

)N
(f(x0)− f?)

after N iterations of the restart scheme in Algorithm 26. Therefore, when running a total
of T = Nk gradient steps, we can rewrite the complexity bound in terms of the total
number of gradient oracle calls (or inner iterations) as

f(xT)− f? ≤
(1

2
µ

8L

)T
(f(x0)− f?), (6.6)

which proves linear convergence in the strongly convex case.
Of course, the basic gradient method with fixed step size in Algorithm 25 has no

memory, so “restarting” it has no impact on the number of iterations or numerical
performance. Invoking the restart scheme in Algorithm 26 simply allows us to produce a

6.2. Hölderian Error Bounds 125

better complexity bound in the strongly convex case. Without information about the
strong convexity parameter (since restart has no impact on the basic gradient method),
whereas the classical bound yields sublinear convergence, while the restart method
converges linearly.

Crucially here, the argument in (6.5) can be significantly generalized to improve the
convergence rate of several types of first-order methods. In fact, as we will see below, a
local bound on the growth rate of the function akin to strong convexity holds almost
generically, albeit with a different exponent than in (6.4).

6.1.2 Restart Strategies

Empirical performance of restart schemes was studied at length in (Becker et al., 2011) and
various restart strategies were explored to improve convergence of basic gradient methods
by exploiting regularity properties of the objective function. (Nesterov, 2013) for example
runs a bounded number of iterations between restarts to obtain linear convergence
in the strongly convex case, while (O’Donoghue and Candes, 2015) obtain excellent
empirical performance by restarting an accelerated method whenever convergence fails
to be monotonic (accelerated methods typically exhibit oscillating convergence near the
optimum). Below, we will describe the performance of a simple grid search on the restart
strategy, attaining optimal performance while using a very limited number of grid points.

6.2 Hölderian Error Bounds

We now recall several results related to subanalytic functions and Hölderian error bounds
of the form

µ

r
d(x,X?)r ≤ f(x)− f?, for all x ∈ K, (HEB)

for some µ, r > 0, where d(x,X?) is the distance to the optimal set. We refer the reader
to, e.g., (Bolte et al., 2007) for a more complete discussion. These results produce bounds
akin to local versions of strong convexity, with various exponents, and they are known to
hold under very generic conditions. In general of course, these values are neither observed
nor known a priori, but as detailed below, restart schemes can be made adaptive to µ
and r and reach optimal convergence rates without any prior information.

6.2.1 Hölderian Error Bound and Smoothness

Let f be a smooth convex function on Rd. Smoothness ensures that

f(x) ≤ f? + L

2 ‖x− y‖
2
2,

for any x ∈ Rd and y ∈ X?. By setting y to be the projection of x on X?, this yields the
following upper bound on suboptimality:

f(x)− f? ≤
L

2 d(x,X?)2. (6.7)

126 Restart Schemes

Now, assume that f satisfies the Hölderian error bound (HEB) on a setK with parameters
(r, µ). Combining (6.7) and (HEB) leads to

2µ
rL
≤ d(x,X?)2−r,

for every x ∈ K. This means that 2 ≤ r by taking x close enough to X?. We will allow
the gradient smoothness exponent of 2 to vary in later results, where we assume the
gradient to be Hölder smooth, but we first detail the smooth case for simplicity. In what
follows, we use the following notations:

κ , L/µ
2
r and τ , 1− 2

r
, (6.8)

to define generalized condition numbers for the function f . Note that if r = 2, then κ
matches the classical condition number of the function.

6.2.2 Subanalytic Functions

Subanalytic functions form a very broad class of functions for which we can demonstrate
the Hölderian error bounds as in (HEB), akin to strong convexity. We recall some key
definitions and refer the reader to, e.g., (Bolte et al., 2007) for a more complete discussion.

Definition 6.1 (Subanalyticity). (i) A subset A ⊂ Rd is called semianalytic if each point
of Rd admits a neighborhood V for which A ∩ V assumes the following form

p⋃
i=1

q⋂
j=1
{x ∈ V : fij(x) = 0, gij(x) > 0},

where fij , gij : V → R are real analytic functions for 1 ≤ i ≤ p, 1 ≤ j ≤ q.
(ii) A subset A ⊂ Rd is called subanalytic if each point of Rd admits a neighborhood V
such that

A ∩ V = {x ∈ Rd : (x, y) ∈ B}

where B is a bounded semianalytic subset of Rd × Rm.
(iii) A function f : Rd → R ∪ {+∞} is called subanalytic if its graph is a subanalytic
subset of Rd × R.

The class of subanalytic functions is, of course, very large, but the definition above
suffers from one key shortcoming since the image and preimage of a subanalytic function
are not generally subanalytic. To remedy this stability issue, we can define a notion of
global subanalyticity. We first define the function βn with

βd(x) ,
(

x1
1 + x2

1
, . . . ,

xd
1 + x2

d

)
,

and we have the following definition.

6.2. Hölderian Error Bounds 127

Definition 6.2 (Global subanalyticity). (i) A subset A of Rd is called globally subanalytic
if its image under βd is a subanalytic subset of Rd.
(ii) A function f : Rd → R ∪ {+∞} is called globally subanalytic if its graph is a globally
subanalytic subset of Rd × R.

We now recall the Łojasiewicz factorization lemma, which gives us local growth
bounds on the graph of a function around its minimum.

Theorem 6.1 (Łojasiewicz factorization lemma). Let K ⊂ Rd be a compact set and
g, h : K → R two continuous globally subanalytic functions. If

h−1(0) ⊂ g−1(0),

then
µ

r
|g(x)|r ≤ |h(x)|, for all x ∈ K, (6.9)

for some µ, r > 0.

In an optimization context on a compact set K ⊂ Rd, we can set h(x) = f(x)− f?
and g(x) = d(x,X?), the Euclidean distance from x to the set X?, where X? is the set
of optimal solutions. In this case, we have h−1(0) ⊂ g−1(0), and we can show that g
is globally subanalytic if X? is globally subanalytic and f is continuous and globally
subanalytic. Theorem 6.1 provides the following Hölderian error bound,

µ

r
d(x,X?)r ≤ f(x)− f?, for all x ∈ K, (6.10)

for some µ, r > 0. Here, Theorem 6.1 produces a bound on the growth rate of the function
around the optimum, generalizing the strong convexity bound in (6.4). We illustrate
this in Figure 6.2. Overall, since continuity and subanalyticity are very weak conditions,
Theorem 6.1 shows that the Hölderian error bound in (HEB) holds almost generically.

-0.5 0 0.5

0

0.1

0.2

0.3

0.4

0.5

-1 0 1

0

0.1

0.2

0.3

0.4

0.5

-1 0 1

0

0.1

0.2

0.3

0.4

0.5

Figure 6.2: Left and center: The functions |x| and x2 satisfy a growth condition around zero. Right:
The function exp(−1/x2) does not.

128 Restart Schemes

6.3 Optimal Restart Schemes

We now discuss how the Hölderian error bounds detailed above can be exploited using
restart schemes. Generic exponents beyond strong convexity, require restart schemes with
a varying number of inner iterations (versus a constant one in the strongly convex case)
and we we study here the cost of finding the best such scheme. Suppose again that we
seek to solve the following unconstrained minimization problem:

min
x∈Rd

f(x) (6.11)

where the gradient of f is Lipschitz continuous with constant L with respect to the
Euclidean norm. The optimal method in (4.9) detailed as Algorithm 11 produces a point
xk that satisfies

f(xk)− f? ≤
4L
k2 ‖x0 − x?‖22 (6.12)

after k iterations.
Assuming that the function f satisfies the Hölderian error bound (HEB), we can use

a chaining argument similar to that in (6.5) to demonstrate improved convergence rates.
While a constant number of inner iterations (between restarts) is optimal in the strongly
convex case, the optimal restart scheme for r > 2 involves a geometrically increasing
number of inner iterations (Nemirovsky and Nesterov, 1985; Roulet and d’Aspremont,
2017).

Theorem 6.2 (Restart complexity). Let f be a smooth convex function satisfying (6.2)
with parameter L and (HEB) with parameters (r, µ) on a set K. Assume that we are
given x0 ∈ Rd such that {x| f(x) ≤ f(x0)} ⊂ K. Run the restart scheme in Algorithm 26
from x0 with iteration the schedule ki = C?κ,τe

τi, for i = 1, . . . , R, where

C?κ,τ , e1−τ (cκ)
1
2 (f(x0)− f?)−

τ
2 , (6.13)

with κ and τ defined in (6.8) and c = 4e2/e. The precision reached at the last point x̂ is
bounded by,

f(x̂)− f? ≤
f(x0)− f?(

τe−1(f(x0)− f?)
τ
2 (cκ)− 1

2N + 1
) 2
τ

= O
(
N−

2
τ

)
, (6.14)

when τ > 0, where N = ∑R
i=1 ki is the total number of inner iterations.

In the strongly convex case, i.e., when τ = 0, the bound above becomes

f(x̂)− f? ≤ exp
(
−2e−1(cκ)−

1
2N
)

(f(x0)− f?) = O
(
exp(−κ−

1
2N)

)
and we recover the classical linear convergence bound for Algorithm 14 in the strongly
convex case. On the other hand, when 0 < τ < 1, bound (6.14) reveals a faster convergence
rate than accelerated gradient methods on non-strongly convex functions (i.e., when r > 2).

6.4. Robustness and Adaptivity 129

The closer r is to 2, the tighter the upper and lower bounds induced by smoothness
and sharpness are, yielding a better model for the function and faster convergence. This
property matches the lower bounds for optimizing smooth sharp functions (Nemirovsky
and Nesterov, 1985) up to a constant factor. Moreover, setting ki = C?κ,τe

τi yields
continuous bounds on the precision, i.e., when τ → 0, bound (6.14) converges to the
linear bound, which shows that for values of τ near zero, constant restart schemes are
almost optimal.

6.4 Robustness and Adaptivity

The previous restart schedules depend on the sharpness parameters (r, µ) in (HEB).
In general, of course, these values are neither observed nor known a priori. Making
the restart scheme adaptive is thus crucial for practical performance. Fortunately, a
simple logarithmic grid search on these parameters is enough to guarantee nearly optimal
performance. In other words, as shown in (Roulet and d’Aspremont, 2017), the complexity
bound in (6.14) is somewhat robust to misspecification of the inner iteration schedule ki.

6.4.1 Grid Search Complexity

We can test several restart schemes in Algorithm 26, each with a given number of
inner iterations N to perform a log-scale grid search on the values of τ and κ in (6.8).
We see below that running (log2N)2 restart schemes suffices to achieve nearly optimal
performance. We define these schemes as{

Sp,0 : Restart Algorithm 11 with ki = Cp,

Sp,q : Restart Algorithm 11 with ki = Cpe
τqi, (6.15)

where Cp = 2p and τq = 2−q. We stop these schemes when the total number of inner
algorithm iterations exceeds N , i.e., at the smallest R such that ∑R

i=1 ki ≥ N . The size
of the grid search in Cp is naturally bounded since as we cannot restart the algorithm
after more than N total inner iterations, so p ∈ [1, . . . , blog2Nc]. Also, when τ is smaller
than 1/N , a constant schedule performs as well as the optimal, geometrically increasing
schedule, which crucially means we can also choose q ∈ [0, . . . , dlog2Ne] and limits the
cost of the grid search to log2

2N . We have the following complexity bounds.

Theorem 6.3 (Adaptive restart complexity). Let f be a smooth convex function satis-
fying (6.2) with parameter L and (HEB) with parameters (r, µ) on a set K. Assume
that we are given x0 ∈ Rd such that {x| f(x) ≤ f(x0)} ⊂ K, and let N be a given
number of iterations. Run the schemes Sp,q, defined in (6.15), for p ∈ [1, . . . , blog2Nc]
and q ∈ [0, . . . , dlog2Ne], stopping each time after N total inner algorithm iterations,
i.e., for R such that ∑R

i=1 ki ≥ N . Assume N is large enough, such that N ≥ 2C?κ,τ , and
if 1

N > τ > 0, C?κ,τ > 1.
(i) If τ = 0, there exists p ∈ [1, . . . , blog2Nc] such that scheme Sp,0 achieves a precision

130 Restart Schemes

given by
f(x̂)− f? ≤ exp

(
−e−1(cκ)−

1
2N
)

(f(x0)− f?).

(ii) If τ > 0, there exist p ∈ [1, . . . , blog2Nc] and q ∈ [1, . . . , dlog2Ne] such that scheme
Sp,q achieves a precision given by

f(x̂)− f? ≤
f(x0)− f?(

τe−1(cκ)− 1
2 (f(x0)− f?)

τ
2 (N − 1)/4 + 1

) 2
τ

.

Overall, running the logarithmic grid search has a complexity that is (log2N)2 times
higher than running N iterations using the optimal scheme where we know the parameters
in (HEB), while the convergence rate is slowed down by roughly a factor four.

6.5 Extensions

We now discuss several extensions of the results above.

Hölder Smooth Gradient

The results above can be extended somewhat directly to more general notions of regularity.
In particular, if we assume that there exist s ∈ [1, 2] and L > 0 on a set J ⊂ Rd, i.e.,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖s−1
2 , for all x, y ∈ J. (6.16)

so that the gradient is Hölder smooth. Without further assumptions on f , the optimal
rate of convergence for this class of functions is bounded as O(1/Nρ), where N is the
total number of iterations and

ρ = 3s/2− 1, (6.17)
which gives ρ = 2 for smooth functions and ρ = 1/2 for non-smooth functions. The
universal fast gradient method (Nesterov, 2015) achieves this rate. It requires both a
target accuracy ε and a starting point x0 as inputs, and it outputs a point x , U(x0, ε, t)
such that

f(x)− f? ≤
ε

2 + cL
2
s d(x0, X?)2

ε
2
s t

2ρ
s

ε

2 , (6.18)

after t iterations, where c is a constant (c = 2 4s−2
s). We can extend the definition of κ

and τ in (6.8) to the case where the gradient is Hölder smooth, with

κ ,
L

2
s

µ
2
r

and τ , 1− s

r
. (6.19)

We see that τ acts as an analytical condition number that measures the tightness of
upper and lower bound models. The key difference from the smooth case described above
is that here we need to schedule both the target accuracy εi used by the algorithm and
the number of iterations ki made at the ith run of the algorithm. Our scheme is described
in Algorithm 27.

6.5. Extensions 131

Algorithm 27 Universal scheduled restarts for convex minimization
Input: x0 ∈ Rd, ε0 ≥ f(x0)− f?, γ ≥ 0, a sequence ki and an inner algorithm U(x, ε, k).
1: for i = 1, . . . , R do
2: εi = e−γεi−1
3: xi = U(xi−1, εi, ki)
4: end for

Output: An approximate solution xR.

We choose a sequence ki that ensures

f(xi)− f? ≤ εi,

for the geometrically decreasing sequence εi. A grid search on the restart scheme still
works in this case, but it requires knowledge of both s and τ .

Theorem 6.4. Let f be a convex function satisfying (6.16) with parameters (s, L) on
a set J and (HEB) with parameters (r, µ) on a set K. Given x0 ∈ Rd assume that
{x|f(x) ≤ f(x0)} ⊂ J ∩K. Run the restart scheme in Algorithm 27 from x0 for a given
ε0 ≥ f(x0)− f? with

γ = ρ, ki = C?κ,τ,ρe
τi, where C?κ,τ,ρ , e1−τ (cκ)

s
2ρ ε
− τ
ρ

0 ,

and where ρ is defined in (6.17), κ and τ are defined in (6.19), and c = 8e2/e here. The
precision reached at the last point xR is given by

f(xR)− f? ≤ exp
(
−ρe−1(cκ)−

s
2ρN

)
ε0 = O

(
exp(−κ−

s
2ρN)

)
,

when τ = 0, whereas when τ > 0,

f(xR)− f? ≤
ε0(

τe−1(cκ)−
s

2ρ ε
τ
ρ

0 N + 1
)− ρ

τ

= O
(
κ
s

2τN−
ρ
τ

)
,

where N = ∑R
i=1 ki is the total number of iterations.

Relative Smoothness

We can also extend the inequality defining condition (HEB) by replacing the distance
to the optimal set by a more general Bregman divergence. Suppose h(x) is a 1-strongly
convex function with respect to the Euclidean norm. The Bregman divergence Dh(x, y)
is defined as

Dh(x, y) , h(x)− h(y)− 〈∇f(y); (x− y)〉, (6.20)

and we say that a function f is L-smooth with respect to h on Rd if

f(y) ≤ f(x) + 〈∇f(x); (y − x)〉+ LDh(y, x), for all x, y ∈ Rd. (6.21)

132 Restart Schemes

We can then extend the Hölderian error bound to the Bregman setting as follows. In
an optimization context, on a compact set K ⊂ Rd, we can set h(x) = f(x) − f? and
g(x) = D(x,X?) = infy∈X? Dh(x, y), where X? is the set of optimal solutions. In this
case, we have h−1(0) ⊂ g−1(0), and we can show that g is globally subanalytic if X? is
subanalytic and if f is continuous and globally subanalytic. Theorem 6.1 shows that

µ

r
D(x,X?)r ≤ f(x)− f?, for all x ∈ K, (HEB-B)

for some µ, r > 0. This allows us to use the restart scheme complexity results above to
accelerate proximal gradient methods.

6.6 Calculus Rules

In general, the exponent r and the factor µ in the bounds (HEB) and (6.25) are not
observed and are difficult to estimate. Nevertheless, due to the robustness result in
Theorem 6.3, searching for the best restart scheme only introduces a log factor in the
overall algorithm complexity. There are, however, a number of scenarios where we can
produce much more precise estimates of r and µ and hence both obtain refined a priori
complexity bounds and reduce the cost of the grid search in (6.15).

In particular, (Li and Pong, 2018) provides “calculus rules” for the HEB exponent
for a number of elementary operations using a related type of error bound known as the
Kurdyka-Łojasiewicz inequality; see (Bolte et al., 2007, Theorem 5) for more details on
the relationship between these two notions. The results focus on the Kurdyka-Łojasiewicz
exponent α, defined as follows.

Definition 6.3. A proper closed convex function has a Kurdyka-Łojasiewicz (KL) expo-
nent α if and only if for any point x̄ ∈ dom∂f there is a neighborhood V of x̄, a constant
ν > 0, and a constant c > 0 such that

D(∂f(x), 0) ≥ c(f(x)− f(x̄))α (6.22)

whenever x ∈ V and f(x̄) ≤ f(x) ≤ f(x̄) + ν.

In particular, (Bolte et al., 2007, Theorem3.3) shows that (HEB) implies (6.22) with
exponent α = 1− 1/r. The other way also holds with r = 1/(1− α), but the constant is
degraded; see (Bolte et al., 2007, Section 3.1). Very briefly, the following calculus rules
apply to the exponent α.

• If f(x) = mini fi(x) and each fi has the KL exponent αi, then f has the KL
exponent α = maxi αi (Li and Pong, 2018, Corollary 3.1).

• Let f(x) = g ◦ F (x), where g is a proper closed function and F is a continuously
differentiable mapping. Suppose in addition that g is a KL function with exponent
α and that the Jacobian JF (x) is a surjective mapping at some x̄ ∈ dom∂f . Then
f has the KL property at x̄ with exponent α (Li and Pong, 2018, Theorem3.2).

6.7. Restarting Other First-Order Methods 133

• If f(x) = ∑
i fi(xi) and each fi is continuous and has the KL exponent αi, then f

has KL exponent α = maxi αi (Li and Pong, 2018, Corollary 3.3).

• Let f be a proper closed convex function with a KL exponent α ∈ [0, 2/3]. Suppose
further that f is continuous on dom∂f . Fix λ > 0 and consider

Fλ(X) = inf
y

{
f(y) + 1

2λ‖x− y‖
2
}
.

Then Fλ has the KL exponent α = max
{

1
2 ,

α
2−2α

}
(Li and Pong, 2018, Theorem3.4).

Note that a related notion of error bound in which the primal gap is replaced by the
norm of the proximal step was studied in, e.g., (Pang, 1987; Luo and Tseng, 1992; Tseng,
2010; Zhou and So, 2017).

6.7 Restarting Other First-Order Methods

The restart argument can be readily extended to other optimization methods provided
their complexity bound directly depends on some measure of distance to optimality. This
is the case for instance for the Frank-Wolfe method, as detailed in (Kerdreux et al., 2019).
Suppose that we seek to solve the following constrained optimization problem

min
x∈C

f(x). (6.23)

The distance to optimality is now measured in terms of the strong Wolfe gap, defined as
follows.

Definition 6.4 (Strong Wolfe gap). Let f be a smooth convex function, C a polytope,
and x ∈ C be arbitrary. Then the strong Wolfe gap w(x) over C is defined as

w(x) , min
S∈Sx

max
y∈S,z∈C

〈f(x); (y − z)〉, (6.24)

where x ∈ Co(S) and

Sx = {S ⊂ Ext(C), finite, x proper combination of elements of S},

is the set of proper supports of x.

The inequality that plays the role of the Hölderian error bound in (HEB) for the
strong Wolfe gap is then written as follows.

Definition 6.5 (Strong Wolfe primal bound). Let K be a compact neighborhood of X?

in C, where X? is the set of solutions of the constrained optimization problem (6.23). A
function f satisfies an r-strong Wolfe primal bound on K, if and only if there exists r ≥ 1
and µ > 0 such that for all x ∈ K

f(x)− f? ≤ µw(x)r, (6.25)

where f? it the minimum of f .

134 Restart Schemes

Notice that this inequality is an upper bound on the primal gap f(x)−f?, whereas the
Hölderian error bound in (HEB) provides a lower bound. This is because the strong Wolfe
gap can be understood as a gradient norm, such that (6.25) is a Łojasiewicz inequality
as in (Bolte et al., 2007), instead of a direct consequence of the Łojasiewicz factorization
lemma as in (HEB) above.

The regularity of f is measured using the away curvature as in (Lacoste-Julien and
Jaggi, 2015), with

CAf , sup
x,s,v∈C
η∈[0,1]

y=x+η(s−v)

2
η2
(
f(y)− f(x)− η〈∇f(x), s− v〉

)
, (6.26)

allowing us to bound the performance the Fractional Away-Step Frank-Wolfe Algorithm
in (Kerdreux et al., 2019), as follows.

Theorem 6.5. Let f be a smooth convex function with away curvature CAf . Assume the
strong Wolfe primal bound in (6.25) holds for some 1 ≤ r ≤ 2. Let γ > 0 and assume
x0 ∈ C is such that e−γw(x0,S0)/2 ≤ CAf . With γk = γ, the output of the Fractional
Away-Step Frank-Wolfe Algorithm satisfies

f(xT)− f? ≤ w0
1(

1+T̃Crγ
) 1

2−r
when 1 ≤ r < 2

f(xT)− f? ≤ w0 exp
(
− γ
e2γ

T̃
8CA

f
µ

)
when r = 2 ,

(6.27)

after T steps, with w0 = w(x0,S0), T̃ , T − (|S0| − |ST |), and

Crγ ,
eγ(2−r) − 1

8e2γCAf µw(x0,S0)r−2 . (6.28)

This result is similar to that of Theorem 6.4, and it shows that restart yields linear
complexity bounds when the exponent in the strong Wolfe primal bound in (6.25) matches
that in the curvature (i.e., r = 2) and that it yields to improved linear rates when the
exponent r satisfies 1 ≤ r < 2. Crucially, the method here is fully adaptive to the error
bound parameters, so no prior knowledge of these parameters is required to get the
accelerated rates in Theorem 6.5, and no log-scale grid search is required.

6.8 Application: Compressed Sensing

In some applications such as compressed sensing, under some classical assumptions on
the problem data, the exponent r is equal to one and the constant µ can be directly
computed from quantities controlling recovery performance. In such problems, a single
parameter thus controls both signal recovery and computational performance.

Consider, for instance, a sparse recovery problem using the `1 norm. Given a matrix
A ∈ Rn×p and observations b = Ax? on a signal x? ∈ Rp, recovery is performed by solving

6.9. Notes and References 135

the `1 minimization program

minimize ‖x‖1
subject to Ax = b

(`1 recovery)

in the variable x ∈ Rp. A number of conditions on A have been derived to guarantee
that (`1 recovery) recovers the true signal whenever it is sparse enough. Among these, the
null space property (see Cohen et al., 2009 and references therein) is defined as follows.

Definition 6.6 (Null space property). The matrix A satisfies the Null Space Property
(NSP) on support S ⊂ {1, p} with constant α ≥ 1 if for any z ∈ Null(A) \ {0},

α‖zS‖1 < ‖zSc‖1. (NSP)

The matrix A satisfies the Null Space Property at order s with constant α ≥ 1 if it
satisfies it on every support S of cardinality at most s.

The null space property is a necessary and sufficient condition for the convex program
(`1 recovery) to recover all signals up to some sparsity threshold. We have, the following
proposition directly linking the null space property and the Hölderian error bound (HEB).

Proposition 6.1. Given a coding matrix A ∈ Rn×p satisfying (NSP) at order s with
constant α ≥ 1, if the original signal x? is s-sparse, then for any x ∈ Rp satisfying Ax = b,
x 6= x?, we have

‖x‖1 − ‖x?‖1 >
α− 1
α+ 1‖x− x?‖1. (6.29)

This implies signal recovery, i.e. optimality of x? for (`1 recovery) and the Hölderian
error bound (HEB) with µ = α−1

α+1 .

6.9 Notes and References

The optimal complexity bounds and exponential restart schemes detailed here can be
traced back to (Nemirovsky and Nesterov, 1985). Restart schemes were extensively
benchmarked in the numerical toolbox TFOCS by (Becker et al., 2011), with a particular
focus on compressed sensing applications. The robustness result showing that a log scale
grid search produces near optimal complexity bounds is due to (Roulet and d’Aspremont,
2017).

Restart schemes based on the gradient norm as a termination criterion also reach
nearly optimal complexity bounds and adapt to strong convexity (Nesterov, 2013) or
HEB parameters (Ito and Fukuda, 2021).

Hölderian error bounds for analytic functions can be traced back to the work of
Lojasiewicz (1963). They were extended to much broader classes of functions by (Kurdyka,
1998; Bolte et al., 2007). Several examples of problems in signal processing where this
condition holds can be found in, e.g., (Zhou et al., 2015; Zhou and So, 2017). Calculus
rules for the exponent are discussed in details in, e.g., (Li and Pong, 2018).

136 Restart Schemes

Restarting is also helpful in the stochastic setting, with (Davis et al., 2019) showing
recently that stochastic algorithms with geometric step decay converge linearly on func-
tions satisfying Hölderian error bounds. This validates a classical empirical acceleration
trick, which is to restarts every few epochs after adjusting the step size (aka the learning
rate in machine learning terminology).

Appendices

A
Useful Inequalities

In this appendix, we prove basic inequalities involving smooth strongly convex functions.
Most of these inequalities are not used in our developments. Nevertheless, we believe
they are useful for gaining intuition about smooth strongly convex of functions, as well
as for comparisons with the literature.

Also note that these inequalities can be considered standard (see, e.g., (Nesterov,
2003, Theorem 2.1.5).

A.1 Smoothness and Strong Convexity in Euclidean spaces

In this section, we consider a Euclidean setting, where ‖x‖22 = 〈x;x〉 and 〈.; .〉 : Rd×Rd →
R is a dot product.

The following theorem summarizes known inequalities that characterize the class of
smooth convex functions. Note that these characterizations of f ∈ F0,L are all equivalent
assuming that f ∈ F0,∞ since convexity is not implied by some of the points below. In
particular, (i), (ii), (v), (vi), and (vii) do not encode the convexity of f when taken on
their own, whereas (iii) and (iv) encode both smoothness and convexity.

Theorem A.1. Let f : Rd → R be a differentiable convex function. The following
statements are equivalent for inclusion in F0,L.

(i) ∇f satisfies a Lipschitz condition: for all x, y ∈ Rd,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

(ii) f is upper bounded by quadratic functions: for all x, y ∈ Rd,

f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2
2.

138

A.1. Smoothness and Strong Convexity in Euclidean spaces 139

(iii) f satisfies, for all x, y ∈ Rd,

f(x) ≥ f(y) + 〈∇f(y);x− y〉+ 1
2L‖∇f(x)−∇f(y)‖22.

(iv) ∇f is cocoercive: for all x, y ∈ Rd,

〈∇f(x)−∇f(y);x− y〉 ≥ 1
L
‖∇f(x)−∇f(y)‖22.

(v) ∇f satisfies, for all x, y ∈ Rd,

〈∇f(x)−∇f(y);x− y〉 ≤ L‖x− y‖22.

(vi) L
2 ‖x‖

2
2 − f(x) is convex.

(vii) f satisfies, for all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)− λ(1− λ)L2 ‖x− y‖
2
2.

Proof. We start with (i)⇒(ii). We use the first-order expansion

f(y) = f(x) +
∫ 1

0
〈∇f(x+ τ(y − x)); y − x〉dτ.

The quadratic upper bound then follows from algebraic manipulations and from upper
bounding the integral term:

f(y) = f(x) + 〈∇f(x); y − x〉

+
∫ 1

0
〈∇f(x+ τ(y − x))−∇f(x); y − x〉dτ

≤ f(x) + 〈∇f(x); y − x〉

+
∫ 1

0
‖∇f(x+ τ(y − x))−∇f(x)‖2‖y − x‖2dτ

≤ f(x) + 〈∇f(x); y − x〉+ L‖x− y‖22
∫ 1

0
τdτ

= f(x) + 〈∇f(x); y − x〉+ L

2 ‖x− y‖
2
2.

We proceed with (ii)⇒(iii). The idea is to require the quadratic upper bound to be
everywhere above the linear lower bound arising from the convexity of f . That is, for all
x, y, z ∈ Rd,

f(y) + 〈∇f(y); z − y〉 ≤ f(z) ≤ f(x) + 〈∇f(x); z − x〉+ L

2 ‖x− z‖
2
2.

140 Useful Inequalities

In other words, for all z ∈ Rd, we must have

f(y) + 〈∇f(y); z − y〉 ≤ f(x) + 〈∇f(x); z − x〉+ L

2 ‖x− z‖
2
2

⇔ f(y)− f(x) + 〈∇f(y); z − y〉 − 〈∇f(x); z − x〉 − L

2 ‖x− z‖
2
2 ≤ 0

⇔ f(y)− f(x) + max
z∈Rd
〈∇f(y); z − y〉 − 〈∇f(x); z − x〉 − L

2 ‖x− z‖
2
2 ≤ 0

⇔ f(y)− f(x) + 〈∇f(y);x− y〉+ 1
2L‖∇f(x)−∇f(y)‖22 ≤ 0,

where the last line follows from the explicit maximization on z. That is, we pick z =
x− 1

L(∇f(x)−∇f(y)) and reach the desired result after base algebraic manipulations.
We continue with (iii)⇒(iv), which simply follows from adding

f(x) ≥ f(y) + 〈∇f(y);x− y〉+ 1
2L‖∇f(x)−∇f(y)‖22

f(y) ≥ f(x) + 〈∇f(x); y − x〉+ 1
2L‖∇f(x)−∇f(y)‖22.

To obtain (iv)⇒(i), one can use Cauchy-Schwartz:

1
L
‖∇f(x)−∇f(y)‖22 ≤〈∇f(x)−∇f(y);x− y〉

≤‖∇f(x)−∇f(y)‖2‖x− y‖2,

which allows us to conclude that ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, thus reaching the final
statement.

To obtain (ii)⇒(v), we simply add

f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2
2

f(y) ≤ f(x) + 〈∇f(x); y − x〉+ L

2 ‖x− y‖
2
2

and reorganize the resulting inequality.
To obtain (v)⇒(ii), we again use a first-order expansion:

f(y) = f(x) +
∫ 1

0
〈∇f(x+ τ(y − x)); y − x〉dτ.

The quadratic upper bound then follows from algebraic manipulations and from upper
bounding the integral term. (We use the intermediate variable zτ = x + τ(y − x) for

A.1. Smoothness and Strong Convexity in Euclidean spaces 141

convenience)

f(y) = f(x) + 〈∇f(x); y − x〉

+
∫ 1

0
〈∇f(x+ τ(y − x))−∇f(x); y − x〉dτ

= f(x) + 〈∇f(x); y − x〉+
∫ 1

0

1
τ
〈∇f(zτ)−∇f(x); zτ − x〉dτ

≤ f(x) + 〈∇f(x); y − x〉+
∫ 1

0

L

τ
‖zτ − x‖22dτ

= f(x) + 〈∇f(x); y − x〉+ L‖x− y‖22
∫ 1

0
τdτ

= f(x) + 〈∇f(x); y − x〉+ L

2 ‖x− y‖
2
2.

For the equivalence (vi)⇔(ii), simply define h(x) = L
2 ‖x‖

2
2−f(x) (and hence ∇h(x) =

Lx−∇f(x)) and observe that for all x, y ∈ Rd,

h(x) ≥ h(y) + 〈∇h(y);x− y〉 ⇔ f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2
2,

which follows from base algebraic manipulations.
Finally, the equivalence (vi)⇔(vii) follows the same h(x) = L

2 ‖x‖
2
2 − f(x) (and hence

∇h(x) = Lx−∇f(x)) and the observation that for all x, y ∈ Rd and λ ∈ [0, 1], we have

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y)
⇔

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)− λ(1− λ)L2 ‖x− y‖
2
2,

which follows from base algebraic manipulations.

To obtain the corresponding inequalities in the strongly convex case, one can rely on
Fenchel conjugation between smoothness and strong convexity; see, for example, (Rock-
afellar and Wets, 2009, Proposition 12.6). The following inequalities are stated without
proofs; they can be obtained either as direct consequences of the definitions or from
Fenchel conjugation along with the statements of Theorem A.1.

Theorem A.2. Let f : Rd → R be a closed convex proper function. The following
statements are equivalent for inclusion in Fµ,L.

(i) ∇f satisfies a Lipschitz and an inverse Lipschitz condition: for all x, y ∈ Rd,

µ‖x− y‖2 ≤ ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

(ii) f is lower and upper bounded by quadratic functions: for all x, y ∈ Rd,

f(y)+〈∇f(y);x− y〉+ µ

2 ‖x− y‖
2
2

≤ f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2
2.

142 Useful Inequalities

(iii) f satisfies, for all x, y ∈ Rd,

f(y)+〈∇f(y);x− y〉+ 1
2L‖∇f(x)−∇f(y)‖22

≤ f(x) ≤

f(y) + 〈∇f(y);x− y〉+ 1
2µ‖∇f(x)−∇f(y)‖22.

(iv) ∇f satisfies, for all x, y ∈ Rd,
1
L
‖∇f(x)−∇f(y)‖22

≤ 〈∇f(x)−∇f(y);x− y〉 ≤ 1
µ
‖∇f(x)−∇f(y)‖22.

(v) ∇f satisfies, for all x, y ∈ Rd,

µ‖x− y‖22 ≤ 〈∇f(x)−∇f(y);x− y〉 ≤ L‖x− y‖22.

(vi) For all λ ∈ [0, 1],

λf(x)+(1− λ)f(y)− λ(1− λ)L2 ‖x− y‖
2
2

≤ f(λx+ (1− λ)y) ≤

λf(x)+(1− λ)f(y)− λ(1− λ)µ2 ‖x− y‖
2
2.

(vii) f(x)− µ
2‖x‖

2
2 and L

2 ‖x‖
2
2 − f(x) are convex and (L− µ)-smooth.

Finally, we mention that the existence of an inequality that allows us to encode
both smoothness and strong convexity together. This inequality is also known as an
interpolation inequality (Taylor et al., 2017c), and it turns out to be particularly useful
for proving worst-case guarantees.

Theorem A.3. Let f : Rd → R be a differentiable function. f is L-smooth µ-strongly
convex if and only if

f(x) ≥ f(y)+〈∇f(y);x− y〉+ 1
2L‖∇f(x)−∇f(y)‖22

+ µ

2(1− µ/L)‖x− y −
1
L

(∇f(x)−∇f(y))‖22.
(A.1)

Proof. (f ∈ Fµ,L ⇒ (A.1)) The idea is to require the quadratic upper bound from
smoothness to be everywhere above the quadratic lower bound arising from strong
convexity. That is, for all x, y, z ∈ Rd

f(y) + 〈∇f(y); z − y〉+ µ

2 ‖z − y‖
2
2 ≤ f(z) ≤f(x) + 〈∇f(x); z − x〉

+ L

2 ‖x− z‖
2
2.

A.2. Smoothness for General Norms and Restricted Sets 143

In other words, for all z ∈ Rd, we must have

f(y)+〈∇f(y); z − y〉+ µ

2 ‖z − y‖
2
2 ≤ f(x)

+ 〈∇f(x); z − x〉+ L

2 ‖x− z‖
2
2

⇔f(y)− f(x) + 〈∇f(y); z − y〉+ µ

2 ‖z − y‖
2
2 − 〈∇f(x); z − x〉

− L

2 ‖x− z‖
2
2 ≤ 0

⇔f(y)− f(x) + max
z∈Rd

(
〈∇f(y); z − y〉+ µ

2 ‖z − y‖
2
2

− 〈∇f(x); z − x〉 − L

2 ‖x− z‖
2
2

)
≤ 0

explicit maximization over z. That is, picking z = Lx−µy
L−µ −

1
L−µ(∇f(x)−∇f(y)) allows

the desired inequality to be reached by base algebraic manipulations.
((A.1)⇒ f ∈ Fµ,L) f ∈ F0,L is direct by observing that (A.1) is stronger than

Theorem A.1(iii); f ∈ Fµ,L is then direct by reformulating (A.1) as

f(x) ≥ f(y)+〈∇f(y);x− y〉+ µ

2 ‖x− y‖
2
2

+ 1
2L(1− µ/L)‖∇f(x)−∇f(y)− µ(x− y)‖22,

which is stronger than f(x) ≥ f(y) + 〈∇f(y);x− y〉+ µ
2‖x− y‖

2
2.

Remark A.1. It is crucial to recall that some of the inequalities above are only valid when
dom f = Rd—in particular, this holds for Theorem A.1(iii & iv), Theorem A.2(iii&iv),
and Theorem A.3. We refer to (Drori, 2018) for an illustration that some inequalities are
not valid when restricted on some dom f 6= Rd. Most standard inequalities, however, do
hold even in the case of restricted domains, as established in, e.g., (Nesterov, 2003). Some
other inequalities, such as Theorem A.1(iv) and Theorem A.2(iv), do hold under the
additional assumption of twice continuous differentiability(see, for example, (De Klerk
et al., 2020)).

A.2 Smoothness for General Norms and Restricted Sets

In this section, we show that requiring a Lipschitz condition on ∇f , on a convex set
C ⊆ Rd, implies a quadratic upper bound on f . That is, requiring that for all x, y ∈ C,

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖,

where ‖.‖ is some norm and ‖.‖∗ is the corresponding dual norm, implies a quadratic
upper bound ∀x, y ∈ C:

f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2.

144 Useful Inequalities

Theorem A.4. Let f : Rd → R ∪ {+∞} be continuously differentiable on some open
convex set C ⊆ Rd, and let it satisfy a Lipschitz condition

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖,

for all x, y ∈ C. Then, it holds that

f(x) ≤ f(y) + 〈∇f(y);x− y〉+ L

2 ‖x− y‖
2,

for all x, y ∈ C.

Proof. The desired result is obtained from a first-order expansion:

f(y) = f(x) +
∫ 1

0
〈∇f(x+ τ(y − x)); y − x〉dτ.

The quadratic upper bound then follows from algebraic manipulations and from upper
bounding the integral term

f(y) = f(x) + 〈∇f(x); y − x〉

+
∫ 1

0
〈∇f(x+ τ(y − x))−∇f(x); y − x〉dτ

≤ f(x) + 〈∇f(x); y − x〉

+
∫ 1

0
‖∇f(x+ τ(y − x))−∇f(x)‖∗‖y − x‖dτ

≤ f(x) + 〈∇f(x); y − x〉+ L‖x− y‖2
∫ 1

0
τdτ

= f(x) + 〈∇f(x); y − x〉+ L

2 ‖x− y‖
2.

B
Variations on Nesterov Acceleration

B.1 Relations between Acceleration Methods

B.1.1 Optimized Gradient Method: Forms I & II

In this short section, we show that Algorithm 9 and Algorithm 10 generate the same
sequence {yk}k. A direct consequence of this statement is that the sequences {xk}k also
match, as in both cases they are generated from simple gradient steps on {yk}k.

For this purpose we show that Algorithm 10 is a reformulation of Algorithm 9.

Proposition B.1. The sequence {yk}k generated by Algorithm 9 is equal to that generated
by Algorithm 10.

Proof. We first observe that the sequences are initiated the same way in both formulations
of the OGM. Furthermore, consider one iteration of the OGM in form I:

yk =
(

1− 1
θk,N

)
xk + 1

θk,N
zk.

Therefore, we clearly have zk = θk,Nyk + (1− θk,N)xk. At the next iteration, we have

yk+1 =
(

1− 1
θk+1,N

)
xk+1 + 1

θk+1,N

(
zk −

2θk,N
L
∇f(yk)

)

=
(

1− 1
θk+1,N

)
xk+1

+ 1
θk+1,N

(
θk,Nyk + (1− θk,N)xk −

2θk,N
L
∇f(yk)

)
,

where we substituted zk by its equivalent expression from the previous iteration. Now,

145

146 Variations on Nesterov Acceleration

by noting that − 1
L∇f(yk) = xk+1 − yk, we reach

yk+1 = θk+1,N − 1
θk+1,N

xk+1 + 1
θk+1,N

((1− θk,N)xk + 2θk,Nxk+1 − θk,Nyk)

= xk+1 + θk,N − 1
θk+1,N

(xk+1 − xk) + θk,N
θk+1,N

(xk+1 − yk),

where we reorganized the terms to achieve the same format as in Algorithm 10.

B.1.2 Nesterov’s Method: Forms I, II, and III

Proposition B.2. The two sequences {xk}k and {yk}k generated by Algorithm 11 are
equal to those generated by Algorithm 12.

Proof. In order to prove the result, we use the identities Ak+1 = a2
k as well as Ak =∑k−1

i=0 ai, and a2
k+1 = a2

k + ak+1.
Given that the sequences {xk}k are obtained from gradient steps on yk in both

formulations, it is sufficient to prove that the sequences {yk}k match. The equivalence
is clear for k = 0, as both methods generate y1 = x0 − 1

L∇f(x0). For k ≥ 0, from
Algorithm 11, one can write iteration k as

yk = Ak
Ak+1

xk +
(

1− Ak
Ak+1

)
zk,

and hence,

zk = Ak+1
Ak+1 −Ak

yk +
(

1− Ak+1
Ak+1 −Ak

)
xk

= akyk + (1− ak)xk.
Substituting this expression in that for iteration k + 1, we reach

yk+1 =Ak+1
Ak+2

xk+1 + Ak+2 −Ak+1
Ak+2

(
zk −

Ak+1 −Ak
L

∇f(yk)
)

= a2
k

a2
k+1

xk+1 + 1
ak+1

(
akyk + (1− ak)xk −

ak
L
∇f(yk)

)

= a2
k

a2
k+1

xk+1 + 1
ak+1

(akxk+1 + (1− ak)xk)

=xk+1 + ak − 1
ak+1

(xk+1 − xk),

where we substituted the expression for zk and used previous identities to reach the
desired statement.

The same relationship holds with Algorithm 13, as provided by the next proposition.

Proposition B.3. The three sequences {zk}k, {xk}k and {yk}k generated by Algorithm 11
are equal to those generated by Algorithm 13.

B.1. Relations between Acceleration Methods 147

Proof. Clearly, we have x0 = z0 = y0 in both methods. Let us assume that the sequences
match up to iteration k, that is, up to yk−1, xk, and zk. Clearly, both yk and zk+1 are
computed in the same way in both methods. It remains to compare the update rules for
xk+1: in Algorithm 13, we have

xk+1 = Ak
Ak+1

xk +
(

1− Ak
Ak+1

)
zk+1

= yk −
(

1− Ak
Ak+1

)
Ak+1 −Ak

L
∇f(yk),

where we used the update rule for zk+1. Further simplifications, along with the identity
(Ak+1 −Ak)2 = Ak+1 allows us to arrive at

xk+1 = yk −
(Ak+1 −Ak)2

LAk+1
∇f(yk)

= yk −
1
L
∇f(yk),

which is clearly the same update rule as that of Algorithm 11. Hence, all sequences match
and the desired statement is proved.

B.1.3 Nesterov’s Accelerated Gradient Method (Strongly Convex Case): Forms I,
II, and III

In this short section, we provide alternate, equivalent, formulations for Algorithm 14.

Algorithm 28 Nesterov’s method, form II
Input: L-smooth µ-strongly convex function f and initial point x0.
1: Initialize z0 = x0; q = µ/L, A0 = 0, and A1 = (1− q)−1.
2: for k = 0, . . . do

3: Ak+2 = 2Ak+1+1+
√

4Ak+1+4qA2
k+1+1

2(1−q)
4: xk+1 = yk − 1

L∇f(yk)
5: yk+1 = xk+1 + βk(xk+1 − xk)
6: with βk = (Ak+2−Ak+1)(Ak+1(1−q)−Ak−1)

Ak+2(2qAk+1+1)−qA2
k+1

7: end for
Output: Approximate solution xN .

Proposition B.4. The two sequences {xk}k and {yk}k generated by Algorithm 14 are
equal to those generated by Algorithm 28.

Proof. Without loss of generality, we can consider that a third sequence zk is present in
Algorithm 28 (although it is not computed).

Obviously, we have x0 = z0 = y0 in both methods. Let us assume that the sequences
match up to iteration k, that is, up to yk, xk, and zk. Clearly, xk+1 is computed in the

148 Variations on Nesterov Acceleration

same way in both methods as a gradient step from yk, and it remains to compare the
update rules for yk+1. In Algorithm 14, we have

yk+1 =xk + (τk − τk+1(τk − 1)(1− qδk)) (zk − xk)

− (δk − 1)τk+1 + 1
L

∇f(yk),

whereas in Algorithm 14, we have

yk+1 = xk + (βk + 1)τk(zk − xk)−
1 + βk
L
∇f(yk).

By noting that βk = τk+1(δk − 1), we see that the coefficients in front of ∇f(yk) match
in both expressions. It remains to check that

(βk + 1)τk − (τk − τk+1(τk − 1)(1− qδk))

is identically 0 to reach the desired statement. By substituting βk = τk+1(δk − 1), this
expression reduces to

τk+1(δk(τk(1− q) + q)− 1),

and we have to verify that (δk(τk(1 − q) + q) − 1) is zero. Substituting and reworking
this expression using the expressions for τk, and δk, we arrive at

τk
(
(Ak+1 −Ak)2 −Ak+1 − qA2

k+1

)
(Ak+1 −Ak)(1 + qAk+1) = 0,

as we recognize that (Ak+1 −Ak)2 −Ak+1 − qA2
k+1 = 0 (which is the expression we used

to select Ak+1).

Algorithm 29 Nesterov’s method, form III
Input: L-smooth µ-strongly convex function f and initial point x0.
1: Initialize z0 = x0 and A0 = 0; q = µ/L.
2: for k = 0, . . . do
3: Ak+1 = 2Ak+1+

√
4Ak+4qA2

k
+1

2(1−q)

4: set τk = (Ak+1−Ak)(1+qAk)
Ak+1+2qAkAk+1−qA2

k
and δk = Ak+1−Ak

1+qAk+1

5: yk = xk + τk(zk − xk)
6: zk+1 = (1− qδk)zk + qδkyk − δk

L∇f(yk)
7: xk+1 = Ak

Ak+1
xk + (1− Ak

Ak+1
)zk+1

8: end for
Output: Approximate solution xN .

Proposition B.5. The three sequences {zk}k, {xk}k, and {yk}k generated by Algorithm 14
are equal to those generated by Algorithm 29.

B.2. Conjugate Gradient Method 149

Proof. Clearly, we have x0 = z0 = y0 in both methods. Let us assume that the sequences
match up to iteration k, that is, up to yk−1, xk, and zk. Since yk and zk+1 are clearly
computed in the same way in both methods, we only have to verify that the update rules
for xk+1 match. In other words, we have to verify that

Ak
Ak+1

xk + (1− Ak
Ak+1

)zk+1 = yk −
1
L
∇f(yk),

which, using the update rules for zk+1 and yk, amounts to verifying that

−
(Ak+1 −Ak)2 −Ak+1 − qA2

k+1
LAk+1(1 + qAk+1) ∇f(yk) = 0.

This statement is true since we recognize (Ak+1 − Ak)2 − Ak+1 − qA2
k+1 = 0 as the

expression used to select Ak+1.

B.2 Conjugate Gradient Method

Historically, Nesterov’s accelerated gradient method (Nesterov, 1983) was preceded by
a few other methods with optimal worst-case convergence rates O(N−2) for smooth
convex minimization. However, the alternate schemes required the capability to optimize
exactly over a few dimensions—plane-searches were used in (Nemirovsky and Yudin,
1983c; Nemirovsky and Yudin, 1983b) and line-searches were used in (Nemirovsky, 1982);
unfortunately these references are not available in English, and we refer to (Narkiss and
Zibulevsky, 2005) for related discussions.

In this vein, accelerated methods can be obtained through their links with conjugate
gradients (Algorithm 30), as a by-product of the worst-case analysis. In this section, we
illustrate the absolute perfection of the connection between the OGM and conjugate
gradients is absolutely perfect: an identical proof (achieving the lower bound) is valid for
both methods. The conjugate gradient (CG) method for solving quadratic optimization

Algorithm 30 Conjugate gradient method
Input: L-smooth convex function f , initial point y0, and budget N .
1: for k = 0, . . . , N − 1 do
2: yk+1 = argminx{f(x) : x ∈ y0 + span{∇f(y0), . . . , ∇f(yk)}}
3: end for

Output: Approximate solution yN .

problems is known to have an efficient form that does not require span-searches (which
are in general too expensive to be of any practical interest); see, for example, (Nocedal
and Wright, 2006). Beyond quadratics, it is generally not possible to reformulate the
CG method in an efficient way. However, it is possible to find other methods for which
the same worst-case analysis applies, and it turns out that the OGM is one of them—
see (Drori and Taylor, 2020) for details. Similarly, by slightly weakening the analysis of

150 Variations on Nesterov Acceleration

the CG method, one can find other methods, such as Nesterov’s accelerated gradient (see
Remark B.1 below for more details).

More precisely, recall the previous definition for the sequence {θk,N}k, defined in (4.8):

θk+1,N =


1+
√

4θ2
k,N

+1
2 if k ≤ N − 2

1+
√

8θ2
k,N

+1
2 if k = N − 1.

As a result of the worst-case analysis presented below, all methods satisfying

〈∇f(yi); yi−
[(

1− 1
θi,N

)(
yi−1 − 1

L∇f(yi−1)
)

+ 1
θi,N

y0 − 2
L

i−1∑
j=0

θj,N∇f(yj)

]〉 ≤ 0
(B.1)

achieve the optimal worst-case complexity of smooth convex minimization that is provided
by Theorem 4.7. On the one hand, the CG ensures that this inequality holds thanks to
its span-searches (which ensure the orthogonality of successive search directions); that is,

〈∇f(yi); yi − yi−1 + 1
θi,N

(yi−1 − y0)〉 = 0

〈∇f(yi);∇f(y0)〉 = 0
...

〈∇f(yi);∇f(yi−1)〉 = 0.
On the other hand, the OGM enforces this inequality by using

yi =
(

1− 1
θi,N

)(
yi−1 − 1

L∇f(yi−1)
)

+ 1
θi,N

y0 − 2
L

i−1∑
j=0

θj,N∇f(yj)

 .
Optimized and Conjugate Gradient Methods: Worst-case Analyses

The worst-case analysis below relies on the same potentials used for the optimized gradient
method; see Theorem 4.4 and Lemma 4.5.

Theorem B.1. Let f be an L-smooth convex function,N ∈ N and some x? ∈ argminx f(x).
The iterates of the conjugate gradient method (CG, Algorithm 30) and of all methods
whose iterates are compliant with (B.1) satisfy

f(yN)− f(x?) ≤
L‖y0 − x?‖22

2θ2
N,N

,

for all y0 ∈ Rd.

Proof. The result is obtained from the same potential as that used for the OGM, obtained
from further inequalities. That is, we first perform a weighted sum of the following
inequalities.

B.2. Conjugate Gradient Method 151

• Smoothness and convexity of f between yk−1 and yk with weight λ1 = 2θ2
k−1,N :

0 ≥f(yk)− f(yk−1) + 〈∇f(yk); yk−1 − yk〉

+ 1
2L‖∇f(yk)−∇f(yk−1)‖22.

• Smoothness and convexity of f between x? and yk with weight λ2 = 2θk,N :

0 ≥ f(yk)− f(x?) + 〈∇f(yk);x? − yk〉+ 1
2L‖∇f(yk)‖22.

• Search procedure to obtain yk, with weight λ3 = 2θ2
k,N :

0 ≥ 〈∇f(yk); yk −
[(

1− 1
θk,N

)(
yk−1 − 1

L∇f(yk−1)
)

+ 1
θk,N

zk

]
〉,

where we used zk := y0 − 2
L

∑k−1
j=0 θj,N∇f(yj).

The weighted sum is a valid inequality:

0 ≥λ1[f(yk)− f(yk−1) + 〈∇f(yk); yk−1 − yk〉

+ 1
2L‖∇f(yk)−∇f(yk−1)‖22]

+ λ2[f(yk)− f(x?) + 〈∇f(yk);x? − yk〉+ 1
2L‖∇f(yk)‖22]

+ λ3[〈∇f(yk); yk −
[(

1− 1
θk,N

)(
yk−1 − 1

L∇f(yk−1)
)

+ 1
θk,N

zk

]
〉].

Substituting zk+1, the previous inequality can be reformulated exactly as

0 ≥2θ2
k,N

(
f(yk)− f? −

1
2L‖∇f(yk)‖22

)
+ L

2 ‖zk+1 − x?‖22

− 2θ2
k−1,N

(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

)
− L

2 ‖zk − x?‖
2
2

+ 2
(
θ2
k−1,N − θ2

k,N + θk,N
)(

f(yk)− f? + 1
2L‖∇f(yk)‖22

)
+ 2

(
θ2
k−1,N − θ2

k,N + θk,N
)
〈∇f(yk); yk−1 − 1

L∇f(yk−1)− yk〉.

We reach the desired inequality by selecting θk,N that satisfies θk,N ≥ θk−1,N and

θ2
k−1,N − θ2

k,N + θk,N = 0,

thereby reaching the same potential as in Theorem 4.4.
To obtain the technical lemma that allows us to bound the final f(yN)− f?, we follow

the same steps with the following inequalities.

152 Variations on Nesterov Acceleration

• Smoothness and convexity of f between yk−1 and yk with weight λ1 = 2θ2
N−1,N :

0 ≥f(yN)− f(yN−1) + 〈∇f(yN); yN−1 − yN 〉

+ 1
2L‖∇f(yN)−∇f(yN−1)‖22.

• Smoothness and convexity of f between x? and yk with weight λ2 = θN,N :

0 ≥ f(yN)− f(x?) + 〈∇f(yN);x? − yN 〉+ 1
2L‖∇f(yN)‖22.

• Search procedure to obtain yN , with weight λ3 = θ2
N,N :

0 ≥ 〈∇f(yN); yN −
[(

1− 1
θN,N

)(
yN−1 − 1

L∇f(yN−1)
)

+ 1
θN,N

zN

]
〉.

The weighted sum can then be reformulated as:

0 ≥θ2
N,N (f(yN)− f?) + L

2 ‖zN −
θN,N
L ∇f(yN)− x?‖22

− 2θ2
N−1,N

(
f(yN−1)− f? −

1
2L‖∇f(yN−1)‖22

)
− L

2 ‖zN − x?‖
2
2

+
(
2θ2
N−1,N − θ2

N,N + θN,N
)(

f(yN)− f? + 1
2L‖∇f(yN)‖22

)
+
(
2θ2
N−1,N − θ2

N,N + θN,N
)
〈∇f(yN); yN−1 − 1

L∇f(yN−1)− yN 〉,
thus reaching the desired inequality, as in Lemma 4.5, by selecting θN,N that satisfies
θN,N ≥ θN−1,N and

2θ2
N−1,N − θ2

N,N + θN,N .

Hence, the potential argument from Corollary 4.6 applies as such, and we reach the
desired conclusion. In other words, for all k ∈ {0, . . . , N}, one can define

φk , 2θ2
k−1,N

(
f(yk−1)− f? −

1
2L‖∇f(yk−1)‖22

)
+ L

2 ‖zk − x?‖
2
2

and
φN+1 , θ2

N,N (f(yN)− f?) + L

2 ‖zN −
θN,N
L ∇f(yN)− x?‖22

and reach the desired statement by chaining the inequalities:

θ2
N,N (f(yN)− f?) ≤ φN+1 ≤ φN ≤ . . . ≤ φ0 = L

2 ‖y0 − x?‖22.

Remark B.1. It is possible to further exploit the conjugate gradient method to design
practical accelerated methods in different settings, such as that of Nesterov (1983). This
point of view has been exploited in (Narkiss and Zibulevsky, 2005; Karimi and Vavasis,
2016; Karimi and Vavasis, 2017; Diakonikolas and Orecchia, 2019a), among others. The
link between the CG method and the OGM presented in this section is due to Drori and
Taylor (2020), though with a different presentation that does not involve the potential
function.

B.3. Acceleration Without Monotone Backtracking 153

B.3 Acceleration Without Monotone Backtracking

B.3.1 FISTA without Monotone Backtracking

In this section, we show how to incorporate backtracking strategies that may not satisfy
Lk+1 ≥ Lk, which is important in practice. The developments are essentially the same;
one possible trick is to incorporate all the knowledge about Lk in Ak. That is, we use a
rescaled shape for the potential function:

φk , Bk(f(xk)− f?) + 1 + µBk
2 ‖zk − x?‖22,

where without the backtracking strategy, Bk = Ak
L . This seemingly cosmetic change

allows φk to depend on Lk solely via Bk, and it applies to both backtracking methods
presented in Section 4 (Section 4.7).

The idea used to obtain both methods below is that one can perform the same
computations as in Algorithm 14, replacing Ak by Lk+1Bk and Ak+1 by Lk+1Ak+1 at
iteration k. Thus, as in previous versions, only the current approximate Lipschitz constant
Lk+1 is used at iteration k: previous approximations were only used to compute Bk.

Algorithm 31 Strongly convex FISTA (general initialization of Lk+1)
Input: An L-smooth (possibly µ-strongly) convex function f , a convex function h with

proximal operator available, an initial point x0, and an initial estimate L0 > µ.
1: Initialize z0 = x0, B0 = 0, and some α > 1.
2: for k = 0, . . . do
3: Pick Lk+1 ∈ [L0, Lk].
4: loop
5: set qk+1 = µ/Lk+1,
6: Bk+1 = 2Lk+1Bk+1+

√
4Lk+1Bk+4µLk+1B

2
k
+1

2(Lk+1−µ)

7: set τk = (Bk+1−Bk)(1+µBk)
(Bk+1+2µBkBk+1−µB2

k
) and δk = Lk+1

Bk+1−Bk
1+µBk+1

8: yk = xk + τk(zk − xk)
9: xk+1 = proxh/Lk+1

(
yk − 1

Lk+1
∇f(yk)

)
10: zk+1 = (1− qk+1δk)zk + qk+1δkyk + δk (xk+1 − yk)
11: if (4.21) holds then
12: break {Iterates accepted; k will be incremented.}
13: else
14: Lk+1 = αLk+1 {Iterates not accepted; compute new Lk+1.}
15: end if
16: end loop
17: end for
Output: Approximate solution xk+1.

154 Variations on Nesterov Acceleration

The proof follows the same lines as used for FISTA (Algorithm 4.20). In this case, f
is assumed to be smooth and convex over Rd (i.e., it has full domain, dom f = Rd), and
we are therefore allowed to evaluate gradients of f outside of the domain of h.

Theorem B.2. Let f ∈ Fµ,L (with full domain, dom f = Rd), h be a closed convex
proper function, x? ∈ argminx {F (x) , f(x) + h(x)}, and k ∈ N. For any xk, zk ∈ Rd

and Bk ≥ 0, the iterates of Algorithm 31 that satisfy (4.21) also satisfy

Bk+1(F (xk+1)− F?) + 1 + µBk+1
2 ‖zk+1 − x?‖22

≤ Bk(F (xk)− F?) + 1 + µBk
2 ‖zk − x?‖22,

with Bk+1 = 2Lk+1Bk+1+
√

4Lk+1Bk+4µLk+1B
2
k
+1

2(Lk+1−µ) .

Proof. The proof consists of a weighted sum of the following inequalities.

• Strong convexity of f between x? and yk with weight λ1 = Bk+1 −Bk:

f? ≥ f(yk) + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2.

• Strong convexity of f between xk and yk with weight λ2 = Bk:

f(xk) ≥ f(yk) + 〈∇f(yk);xk − yk〉.

• Smoothness of f between yk and xk+1 (descent lemma) with weight λ3 = Bk+1:

f(yk) + 〈∇f(yk);xk+1 − yk〉+ Lk+1
2 ‖xk+1 − yk‖22 ≥ f(xk+1).

• Convexity of h between x? and xk+1 with weight λ4 = Bk+1− Bk:

h(x?) ≥ h(xk+1) + 〈gh(xk+1);x? − xk+1〉,

with gh(xk+1) ∈ ∂h(xk+1) and xk+1 = yk − 1
Lk+1

(∇f(yk) + gh (xk+1)).

• Convexity of h between xk and xk+1 with weight λ5 = Bk:

h(xk) ≥ h(xk+1) + 〈gh(xk+1);xk − xk+1〉.

We obtain the following inequality:

0 ≥λ1[f(yk)− f? + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2]

+ λ2[f(yk)− f(xk) + 〈∇f(yk);xk − yk〉]
+ λ3[f(xk+1)− (f(yk) + 〈∇f(yk);xk+1 − yk〉

+ Lk+1
2 ‖xk+1 − yk‖22)]

+ λ4[h(xk+1)− h(x?) + 〈gh(xk+1);x? − xk+1〉]
+ λ5[h(xk+1)− h(xk) + 〈gh(xk+1);xk − xk+1〉].

B.3. Acceleration Without Monotone Backtracking 155

Substituting the yk, xk+1, and zk+1 with

yk = xk + τk(zk − xk)

xk+1 = yk −
1

Lk+1
(∇f(yk) + gh(xk+1))

zk+1 = (1− qk+1δk)zk + qk+1δkyk + δk (xk+1 − yk) ,

after some basic but tedious algebra, yields

Bk+1(f(xk+1) + h(xk+1)− f(x?)− h(x?)) + 1 +Bk+1µ

2 ‖zk+1 − x?‖22

≤Bk(f(xk) + h(xk)− f(x?)− h(x?)) + 1 +Bkµ

2 ‖zk − x?‖22

+
Lk+1(Bk −Bk+1)2 −Bk+1 − µB2

k+1
1 + µBk+1

× 1
2Lk+1

‖∇f(yk) + gh(xk+1)‖22

− B2
k(Bk+1 −Bk)(1 + µBk)(1 + µBk+1)(

Bk+1 + 2µBkBk+1 − µB2
k

)2 µ

2 ‖xk − zk‖
2
2.

Then, choosing Bk+1 such that Bk+1 ≥ Bk and

Lk+1(Bk −Bk+1)2 −Bk+1 − µB2
k+1 = 0,

yields the desired result:

Bk+1(f(xk+1) + h(xk+1)− f(x?)− h(x?)) + 1 +Bk+1µ

2 ‖zk+1 − x?‖22

≤Bk(f(xk) + h(xk)− f(x?)− h(x?)) + 1 +Bkµ

2 ‖zk − x?‖22.

Finally, we obtain a complexity guarantee by adapting the potential argument (4.5)
and by noting that Bk+1 is a decreasing function of Lk+1 (whose maximal value is αL,
assuming L0 < L; otherwise, its maximal value is L0). The growth rate of Bk in the
smooth convex setting remains unchanged (see (4.14)) since we have

Bk+1 ≥

(
1
2 +

√
BkLk+1

)2

Lk+1
,

and hence,
√
Bk+1 ≥ 1

2
√
Lk+1

+
√
Bk. Therefore, Bk ≥

(
k

2
√
`

)2
with ` = max{L0, αL}

and Lk+1 ≤ `. As for the geometric rate, we similarly obtain

Bk+1 ≥ Bk

(
1 +

√
µ

Lk+1

)
1− µ

Lk+1

= Bk

1−
√

µ
Lk+1

,

and therefore, Bk+1 ≥ (1−
√

µ
`)−1Bk.

156 Variations on Nesterov Acceleration

Corollary B.3. Let f ∈ Fµ,L(Rd) (with full domain, dom f = Rd), h be a closed convex
proper function and x? ∈ argminx {F (x) , f(x) + h(x)}. For any N ∈ N, N ≥ 1, and
x0 ∈ Rd, the output of Algorithm 31 satisfies

F (xN)− F? ≤ min
{

2
N2 ,

(
1−

√
µ

`

)N}
`‖x0 − x?‖22,

with ` = max{αL,L0}.

Proof. We assume that L > L0 since otherwise, f ∈ Fµ,L0 and the proof directly follows
from the case without backtracking. The chained potential argument (4.5) can be used
as before. Using B0 = 0, we reach

F (xN)− F? ≤
‖x0 − x?‖22

2BN
.

Our previous bounds on BN yields the desired result, using

B1 = 1
Lk+1 − µ

≥ 2`−1

1− µ
`

= 2`−1(
1−

√
µ
`

) (
1 +

√
µ
`

) ≥ `−1

1−
√

µ
`

,

and hence, BN ≥ `−1
(
1−

√
µ
`

)−N
as well as Bk ≥

(
k

2
√
`

)2
.

B.3.2 Another Accelerated Method without Monotone
Backtracking

Just as for FISTA, we can perform the same cosmetic change to Algorithm 20 for
incorporating a non-monotonic estimations of the Lipschitz constant. The proof is
therefore essentially that of Algorithm 20.

Theorem B.4. Let h ∈ F0,∞, f ∈ Fµ,L(domh), x? ∈ argminx {F (x) , f(x)+h(x)}, and
k ∈ N. For any xk, zk ∈ Rd and Bk ≥ 0, the iterates of Algorithm 32 that satisfy (4.21)
also satisfy

Bk+1(F (xk+1)− F?) + 1 + µBk+1
2 ‖zk+1 − x?‖22

≤ Bk(F (xk)− F?) + 1 + µBk
2 ‖zk − x?‖22,

with Bk+1 = 2Lk+1Bk+1+
√

4Lk+1Bk+4µLk+1B
2
k
+1

2(Lk+1−µ) .

Proof. First, {zk}k is in domh by construction—it is the output of a proximal/projection
step. Furthermore, we have 0 ≤ Bk

Bk+1
≤ 1 given that Bk+1 ≥ Bk ≥ 0. A direct consequence

is that since z0 = x0 ∈ domh, all subsequent {yk}k and {xk}k are also in domh (as
they are obtained from convex combinations of feasible points).

The rest of the proof consists of a weighted sum of the following inequalities (which
are valid due to the feasibility of the iterates).

B.3. Acceleration Without Monotone Backtracking 157

Algorithm 32 A proximal accelerated gradient (general initialization of Lk+1)
Input: h ∈ F0,∞ with proximal operator available, f ∈ Fµ,L(domh), an initial point

x0 ∈ domh, and an initial estimate L0 > µ.
1: Initialize z0 = x0, A0 = 0, and some α > 1.
2: for k = 0, . . . do
3: Pick Lk+1 ∈ [L0, Lk].
4: loop
5: Set qk+1 = µ/Lk+1,
6: Bk+1 = 2Lk+1Bk+1+

√
4Lk+1Bk+4µLk+1B

2
k
+1

2(Lk+1−µ)

7: Set τk = Lk+1(Bk+1−Bk)(1+µBk)
Lk+1(Bk+1+2µBkBk+1−µB2

k
) and δk = Lk+1

Bk+1−Bk
1+µBk+1

8: yk = xk + τk(zk − xk)

9: zk+1 = proxδkh/Lk+1

(
(1− qk+1δk)zk + qk+1δkyk − δk

Lk+1
∇ f(yk)

)
10: xk+1 = Ak

Ak+1
xk + (1− Ak

Ak+1
)zk+1

11: if (4.21) holds then
12: break {Iterates accepted; k will be incremented.}
13: else
14: Lk+1 = αLk+1 {Iterates not accepted; compute new Lk+1.}
15: end if
16: end loop
17: end for
Output: An approximate solution xk+1.

• Strong convexity of f between x? and yk with weight λ1 = Bk+1 −Bk:

f(x?) ≥ f(yk) + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2.

• Convexity of f between xk and yk with weight λ2 = Bk:

f(xk) ≥ f(yk) + 〈∇f(yk);xk − yk〉.

• Smoothness of f between yk and xk+1 (descent lemma) with weight λ3 = Bk+1:

f(yk) + 〈∇f(yk);xk+1 − yk〉+ Lk+1
2 ‖xk+1 − yk‖22 ≥ f(xk+1).

• Convexity of h between x? and zk+1 with weight λ4 = Bk+1 −Bk:

h(x?) ≥ h(zk+1) + 〈gh(zk+1);x? − zk+1〉,

with gh(zk+1) ∈ ∂h(zk+1) and zk+1 = (1−qδk)zk+qδkyk− δk
Lk+1

(∇f(yk)+gh(zk+1)).

• Convexity of h between xk and xk+1 with weight λ5 = Bk:

h(xk) ≥ h(xk+1) + 〈gh(xk+1);xk − xk+1〉,

with gh(xk+1) ∈ ∂h(xk+1).

158 Variations on Nesterov Acceleration

• Convexity of h between zk+1 and xk+1 with weight λ6 = Bk+1 −Bk:

h(zk+1) ≥ h(xk+1) + 〈gh(xk+1); zk+1 − xk+1〉.

We obtain the following inequality:

0 ≥λ1[f(yk)− f? + 〈∇f(yk);x? − yk〉+ µ

2 ‖x? − yk‖
2
2]

+ λ2[f(yk)− f(xk) + 〈∇f(yk);xk − yk〉]
+ λ3[f(xk+1)− (f(yk) + 〈∇f(yk);xk+1 − yk〉

+ Lk+1
2 ‖xk+1 − yk‖22)]

+ λ4[h(zk+1)− h(x?) + 〈gh(zk+1);x? − zk+1〉]
+ λ5[h(xk+1)− h(xk) + 〈gh(xk+1);xk − xk+1〉]
+ λ6[h(xk+1)− h(zk+1) + 〈gh(xk+1); zk+1 − xk+1〉].

Substituting the yk, zk+1, and xk+1 by

yk = xk + τk(zk − xk)

zk+1 = (1− qk+1δk)zk + qk+1δkyk −
δk
Lk+1

(∇f(yk) + gh(zk+1))

xk+1 = Bk
Bk+1

xk +
(

1− Bk
Bk+1

)
zk+1,

and algebra allows us to obtain the following reformulation:

Bk+1(f(xk+1) + h(xk+1)− f(x?)− h(x?)) + 1 + µBk+1
2 ‖zk+1 − x?‖22

≤Bk(f(xk) + h(xk)− f(x?)− h(x?)) + 1 + µBk
2 ‖zk − x?‖22

+
(Bk −Bk+1)2

(
Lk+1(Bk −Bk+1)2 −Bk+1 − µB2

k+1

)
Bk+1(1 + µBk+1)2

× 1
2‖∇f(yk) + gh(zk+1)‖22

− B2
k(Bk+1 −Bk)(1 + µBk)(1 + µBk+1)(

Bk+1 + 2µBkBk+1 − µB2
k

)2 µ

2 ‖xk − zk‖
2
2.

The desired inequality follows from selecting Bk+1 such that Bk+1 ≥ Bk and

Lk+1(Bk −Bk+1)2 −Bk+1 − µB2
k+1 = 0,

thereby yielding

Bk+1(f(xk+1) + h(xk+1)− f(x?)− h(x?)) + 1 + µBk+1
2 ‖zk+1 − x?‖22

≤Bk(f(xk) + h(xk)− f(x?)− h(x?)) + 1 +Bkµ

2 ‖zk − x?‖22.

B.3. Acceleration Without Monotone Backtracking 159

The final corollary follows from the same arguments as those used for Corollary B.3.
It provides the final bound for Algorithm 32.

Corollary B.5. Let h ∈ F0,∞, f ∈ Fµ,L(domh), and x? ∈ argminx {F (x) , f(x)+h(x)}.
For any N ∈ N, N ≥ 1, and x0 ∈ Rd, the output of Algorithm 32 satisfies

F (xN)− F? ≤ min
{

2
N2 ,

(
1−

√
µ

`

)−N}
`‖x0 − x?‖22,

with ` = max{αL,L0}.

Proof. The proof follows the same arguments as those for Corollary B.3, using the
potential from Theorem B.4 and the fact that the output of the algorithm satisfies (4.21).

C
On Worst-case Analyses for First-order Methods

C.1 Principled Approaches to Worst-case Analyses

In this section, we show that obtaining convergence rates and proofs can be framed
as finding feasible points to certain convex problems. More precisely, all convergence
guarantees from Section 4 and Section 5 can be obtained as feasible points to certain
linear matrix inequalities (LMI). As we see in what follows, this approach can be seen as
a principled approach to worst-case analysis of first-order methods: the approach fails
only when no such guarantees can be found. The purpose of this section is to provide
complete examples of the LMIs for a few cases of interest: analyses of gradient and
accelerated gradient methods, as well as pointers to the relevant literature. We provide
a full derivation for the base case, and leave advanced ones as exercises for the reader.
Notebooks for obtaining the corresponding LMIs are provided in Section C.5.

The elements of this section are largely inspired by the presentation of Taylor and
Bach (2019) with elements borrowed from the presentation of Taylor, Hendrickx and
Glineur (2017), which is itself largely inspired by that of Drori and Teboulle (2014). The
arguments are also similar to the line of work by Lessard, Recht and Packard (2016)
and follow-up works, see, e.g., (Fazlyab et al., 2018; Hu and Lessard, 2017). The latter
line of works is similar in spirit to the former, but framed in control-theoretic terms, via
so-called integral quadratic constraints, popularized by Megretski and Rantzer (1997).

These techniques are analogous and mostly differs in their presentation styles. Roughly
speaking, they can be seen as dual to each others. That is, whereas the performance
estimation viewpoint stems from the problem of computing worst-case scenarios and
approaches worst-case guarantees as feasible point to the corresponding dual problems,
the integral quadratic constraint approach directly starts from the problem of performing
linear combination of inequalities, which is exactly the dual problem to that of computing
worst-case scenarios. Depending on the background of the researchers involved in a work
on one of those topics, things might therefore be named in different ways. We insist on

160

C.2. Worst-case Analysis as Optimization/Feasibility Problems 161

the fact that those are really two facets of the same coin with only subtle differences in
terms of presentations.

We choose to take the performance estimation viewpoint as using the definition of
a “worst-case” allows to carefully select the most appropriate set of inequalities to be
used. Informally, this advantageous construction allows certifying the approach to provide
meaningful worst-case guarantees: either the approach provides a satisfying worst-case
guarantee, or there exists a non-satisfying counterexample, invalidating the existence of
any satisfying guarantee of the desired form.

Further discussions and a more thorough list of references are provided in Section C.5.
Readability in mind, the presentation focuses on some examples of interest rather than
on a general framework. We refer to (Drori and Teboulle, 2014; Taylor et al., 2017a;
Taylor et al., 2017c) for more details.

C.2 Worst-case Analysis as Optimization/Feasibility Problems

In this section, we provide examples illustrating the type of problems that can be
used for obtaining worst-case guarantees. The base idea underlying the technique is
that worst-case scenarios are by definition solutions to certain optimization problems.
In the context of first-order convex optimization methods, those worst-case scenarios
correspond to solutions to linear semidefinite programs (SDP), which are convex; see,
e.g., (Vandenberghe and Boyd, 1999). It nicely follows from this theory that any worst-
case guarantee (i.e., any upper bound on a worst-case performance) can be formulated as
a feasible point to the dual problem to that of finding worst-case scenarios. Equivalently,
those dual solutions correspond to appropriate weighted sums of inequalities, whose
weights correspond to the values of the dual variables. Proofs from Section 4 and Section 5
correspond to such dual certificates.

Those statements are made more precise in the next sections. We begin by providing
a few examples of LMIs that can be used for designing worst-case guarantees.

Preview: worst-case guarantees via LMIs. Perhaps the most basic LMI that can
be presented for obtaining worst-case guarantees concerns gradient descent and its
convergence in terms of distance to an optimal point. We present it for simplicity, as the
corresponding LMI only involves very few variables. This LMI has also relatively simple
solutions. As our target here is to present the approach, we let finding their solutions
as exercises. We present the LMIs in their most raw forms, even without a few direct
simplifications.

Note that those LMIs always involve n(n− 1) “dual” variables (the precise meaning
of dual becomes clear in the sequel), where n is the number of points at which the
type of guarantee under consideration requires using or specifying a function or gradient
evaluation (either in the algorithm or for computing the value of the guarantee). In the
following example, we need two dual variables because the guarantee only requires using

162 On Worst-case Analyses for First-order Methods

two gradients of f , namely ∇f(xk) (for expressing a gradient step xk+1 = xk−γk∇f(xk))
and ∇f(x?) (for expressing optimality of x? as ∇f(x?) = 0).

Theorem C.1. Let τ ≥ 0 and γk ∈ R. The inequality

‖xk+1 − x?‖22 ≤ τ‖xk − x?‖22 (C.1)

holds for all d ∈ N, all f ∈ Fµ,L(Rd), all xk, xk+1, x? ∈ Rd (such that xk+1 = xk−γk∇f(xk)
and ∇f(x?) = 0), if and only if

∃λ1, λ2 ≥ 0 :


λ1 = λ2

0 �

τ − 1 + µL(λ1+λ2)
2(L−µ) γk − Lλ1+µλ2

2(L−µ)
γk − Lλ1+µλ2

2(L−µ) −γ2
k + λ1+λ2

2(L−µ)

 . (C.2)

We emphasize that the message underlying Theorem C.1 is that verifying a worst-case
convergence guarantee of the form (C.1) boils down to verifying the feasibility of a certain
convex problem. It is relatively straightforward to convert a feasible point of (C.2) to a
proof that only consists of a weighted linear combination of inequalities, see, e.g., (Taylor
et al., 2018b, Theorem 3.1). The corresponding weights are the values of the multipliers
(that is, in Theorem C.1, the weights are λ1 and λ2) as showcased in Section 4 and
Section 5.

As we see in Section C.3, changing the Lyapunov, or potential, function to be
verified also changes the LMI to be solved. The desired LMI can be obtained following a
principled approach presented in the sequel. In particular, the following result is slightly
more complicated and corresponds to verifying the potential provided by Theorem 4.2.
One should note that those LMIs can be solved numerically, providing nice guides for
choosing appropriate analytical weights. Symbolic computations and computer algebra
software might also help.

The following LMI relies on 6 dual variables λ1, . . . , λ6 as it involves gradients and/or
function values of f(·) at three points: xk, xk+1, and x?, thereby fixing n = 3 and hence
n(n− 1) = 6 dual variables.

Theorem C.2. Let Ak+1, Ak ≥ 0 and γk ∈ R. The inequality

Ak+1(f(xk+1)− f?) + L
2 ‖xk+1 − x?‖22 ≤ Ak(f(xk)− f?) + L

2 ‖xk − x?‖
2
2

holds for all d ∈ N, all f ∈ FL(Rd), all xk, xk+1, x? ∈ Rd (such that xk+1 = xk−γk∇f(xk)
and ∇f(x?) = 0) if and only if

∃λ1,λ2, . . . , λ6 ≥ 0 :

0 = Ak + λ1 + λ2 − λ4 − λ6
0 = −Ak+1 − λ2 + λ3 + λ4 − λ5

0 �


0 ? ?

1
2(γkL− λ1) λ1+λ2+λ4+λ6−γ2

kL
2−2γkLλ2

2L ?

−λ3
2

1
2

(
γk(λ3 + λ4)− λ2+λ4

L

)
λ2+λ3+λ4+λ5

2L

 ,
(where ?’s denote symmetric elements in the matrix).

C.2. Worst-case Analysis as Optimization/Feasibility Problems 163

Remark C.1. The LMIs of this section are put in their “raw” forms, for simplicity of the
presentation (which does not focus on solving those LMIs analytically. Of course, a few
simplifications are relatively direct: for instance, any feasible point will have λ1 = γkL

and λ3 = 0, as the corresponding matrix could not be positive semidefinite otherwise.

As we discuss in the sequel (see Remark C.4), it is also relatively straightforward to
obtain weaker versions of those LMIs which are then only sufficient for obtaining valid
worst-case guarantees. Those simplified LMIs might be simpler to solve analytically, and
might therefore be advantageous in certain contexts. Brief discussions and pointers for
this topic are provided in Remark C.4 and Section C.5.

A strongly convex version of Theorem C.2 is provided in Theorem C.5. It is slightly
more algrebaic in its vanilla form, but allows recovering the results of Theorem 4.10 as
a feasible point. Analyses of accelerated methods can be obtained in a similar way, as
illustrated by the following LMI. The latter uses on 12 dual variables λ1, . . . , λ12, as it
relies on evaluating gradients and/or function values of f(·) at four points: yk, xk, xk+1,
and x?, so n = 4 and hence n(n− 1) = 12. Although this LMI might appear as a bit of a
brutal approach to worst-case analysis, one might observe that many of elements of the
LMI can be set to zero due to the structure of the problem.

Theorem C.3. Let Ak+1, Ak ≥ 0 and αk, γk, τk ∈ R, and consider the iteration

yk = xk + τk(zk − xk)
xk+1 = yk − αk∇f(yk)
zk+1 = zk − γk∇f(yk).

(C.3)

The inequality

Ak+1(f(xk+1)− f?) + L
2 ‖zk+1 − x?‖22 ≤ Ak(f(xk)− f?) + L

2 ‖zk − x?‖
2
2

holds for all d ∈ N, all f ∈ FL(Rd), and all xk, xk+1, zk, zk+1, x? ∈ Rd (such that xk+1, zk+1
are generated by (C.3) and ∇f(x?) = 0) if and only if

∃λ1,λ2, . . . , λ12 ≥ 0 :

0 = Ak + λ1 + λ2 − λ4 − λ6 − λ8 + λ11
0 = −Ak+1 − λ2 + λ3 + λ4 − λ5 − λ9 + λ12
0 = λ7 + λ8 + λ9 − λ10 − λ11 − λ12

0 �


0 0 S1,3 S1,4 S1,5
0 0 S2,3 S2,4 S2,5
S1,3 S2,3 S3,3 S3,4 S3,5
S1,4 S2,4 S3,4 S4,4 S4,5
S1,5 S2,5 S3,5 S4,5 S5,5

 ,

164 On Worst-case Analyses for First-order Methods

with
S1,3 = 1

2(λ7(τk − 1) + λ8τk),
S1,4 = −1

2(λ1 + τk(λ2 + λ11)), S1,5 = 1
2(λ3(τk − 1) + λ4τk),

S2,3 = 1
2(γkL− τk(λ7 + λ8)),

S2,4 = 1
2τk(λ2 + λ11), S2,5 = −1

2τk(λ3 + λ4),

S3,3 = λ7 + λ8 + λ9 + λ10 + λ11 + λ12 − γ2
kL

2 − 2αkLλ9
2L ,

S3,4 = −αkLλ2 + λ8 + λ11
2L , S3,5 = 1

2

(
αk(λ3 + λ4 + λ12)− λ9 + λ12

L

)
,

S4,4 = λ1 + λ2 + λ4 + λ6 + λ8 + λ11
2L , S4,5 = −λ2 + λ4

2L ,

S5,5 = λ2 + λ3 + λ4 + λ5 + λ9 + λ12
2L .

C.3 Analysis of Gradient Descent via Linear Matrix Inequalities

In this section, we detail the approach to obtain LMIs such as those of Theorem C.1,
Theorem C.2 and Theorem C.3. We provide full details for gradient descent. The same
technique is presented in a more expeditious way for its accelerated versions afterwards.

C.3.1 Linear Convergence of Gradient Descent

We consider gradient descent for minimizing smooth strongly convex functions. For expo-
sition purposes, we investigate a type of one-iteration worst-case convergence guarantee
in terms of the distance to the optimum (see Theorem C.1) for gradient descent, of the
form:

‖xk+1 − x?‖22 ≤ τ‖xk − x?‖22 (C.4)
which are valid for all d ∈ N, xk, xk+1, x? ∈ Rd and all f ∈ Fµ,L(Rd) (L-smooth µ-strongly
convex function) when xk+1 = xk − γk∇f(xk) (gradient descent) and ∇f(x?) = 0 (x? is
optimal for f). In this context, we denote by τ? (we omit the dependence on γk, µ, and
L for convenience) the smallest value τ for which (C.4) is valid. By definition, this value
can be formulated as the solution to an optimization problem looking for worst-case
scenarios:

τ? , max
d,f

xk,xk+1,x?

‖xk+1 − x?‖22
‖xk − x?‖22

s.t. d ∈ N, f ∈ Fµ,L(Rd)
xk, xk+1, x? ∈ Rd

xk+1 = xk − γk∇f(xk)
∇f(x?) = 0.

(C.5)

As it is, this problem does not look quite practical. However, it actually admits an
equivalent formulation as a linear semidefinite program. As a first step for reaching this

C.3. Analysis of Gradient Descent via Linear Matrix Inequalities 165

formulation, the previous problem can be formulated in an equivalent sampled manner.
That is, we sample f at the points where the first-order information is explicitly used:

τ? = max
d

fk,f?
gk,,g?

xk,xk+1,x?

‖xk+1 − x?‖22
‖xk − x?‖22

s.t. d ∈ N, fk, f? ∈ R
xk, xk+1, x?, gk, g? ∈ Rd

∃f ∈ Fµ,L :
{
fk = f(xk) and gk = ∇f(xk)
f? = f(x?) and g? = ∇f(x?)

g? = 0
xk+1 = xk − γkgk,

(C.6)

and f is now represented in terms of its samples at x? and xk.
A second stage in this reformulation consists of replacing the existence of a certain

f ∈ Fµ,L interpolating (or extending) the samples by an equivalent explicit condition
provided by the following theorem.

Theorem C.4 (Fµ,L-interpolation, Theorem 4 in (Taylor et al., 2017c)). Let L > µ ≥ 0, I
be an index set and S = {(xi, gi, fi)}i∈I ⊆ Rd × Rd × R be a set of triplets. There exists
f ∈ Fµ,L satisfying f(xi) = fi and gi ∈ ∂f(xi) for all i ∈ I if and only if

fi ≥ fj + 〈gj ;xi − xj〉+ 1
2L‖gi − gj‖

2
2

+ µ

2(1− µ/L)‖xi − xj −
1
L(gi − gj)‖22

(C.7)

holds for all i, j ∈ I.

Theorem C.4 conveniently allows replacing the existence constraint by a set of
quadratic inequalities, reaching:

τ? = max
d

fk,f?
gk,xk,x?

‖xk − γkgk − x?‖22
‖xk − x?‖22

s.t. d ∈ N, fk, f? ∈ R
xk, x?, gk ∈ Rd

f? ≥ fk + 〈gk;x? − xk〉+ 1
2L‖gk‖

2
2

+ µ

2(1− µ/L)‖xk −
1
L
gk − x?‖22

fk ≥ f? + 1
2L‖gk‖

2
2

+ µ

2(1− µ/L)‖xk −
1
L
gk − x?‖22,

(C.8)

166 On Worst-case Analyses for First-order Methods

where we also substituted xk+1 and g? by their respective expressions. Finally, we arrive
to a first (convex) semidefinite reformulation of the problem via new variables: G � 0
and F defined as

G ,

[
‖xk − x?‖22 〈gk, xk − x?〉
〈gk, xk − x?〉 ‖gk‖22

]
, F , fk − f?.

The problem turns out to be linear in G and F :

τ? = max
G,F

G1,1 + γ2
kG2,2 − 2γkG1,2
G1,1

s.t. F ∈ R, G ∈ S2

G � 0
F + Lµ

2(L−µ)G1,1 + 1
2(L−µ)G2,2 − L

L−µG1,2 ≤ 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 ≤ 0.

(C.9)

Finally, a simple homogeneity argument (for any feasible (G,F) to (C.9), the pair
(G̃, F̃) , (G/G1,1, F/G1,1) is also feasible with the same objective value, with G̃1,1 = 1
so we can assume without loss of generality that G1,1 = 1 without changing the optimal
value of the problem—note that it is relatively straightforward to establish that the
optimal solution satisfies G1,1 6= 0) allows arriving to the equivalent:

τ? = max
G,F

G1,1 + γ2
kG2,2 − 2γkG1,2

s.t. F ∈ R, G ∈ S2

G � 0
F + Lµ

2(L−µ)G1,1 + 1
2(L−µ)G2,2 − L

L−µG1,2 ≤ 0

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 ≤ 0

G1,1 = 1.

(C.10)

For arriving to the desired LMI, it remains to dualize the problem. That is, we perform
the following primal-dual associations:

F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − L
L−µG1,2 ≤ 0 : λ1,

− F + Lµ
2(L−µ)G1,1 + 1

2(L−µ)G2,2 − µ
L−µG1,2 ≤ 0 : λ2,

G1,1 = 1 : τ.

Standard Lagrangian duality allows arriving to

τ? = min
λ1,λ2,τ≥0

τ

s.t. λ1 = λ2

0 �

τ − 1 + µL(λ1+λ2)
2(L−µ) γk − λ1L+λ2µ

2(L−µ)
γk − λ1L+λ2µ

2(L−µ) −γ2
k + λ1+λ2

2(L−µ)

 ,
(C.11)

C.3. Analysis of Gradient Descent via Linear Matrix Inequalities 167

where we used the fact there is no duality gap, as one can show the existence of a Slater
point (Boyd and Vandenberghe, 2004). One such Slater point can be obtained by applying
gradient descent on the function f(x) = 1

2x
>diag(L, µ)x (i.e., d = 2) with xk = (1, 1). A

formal statement is provided in (Taylor et al., 2017c, Theorem 6).
Theorem C.1 is now a direct consequence of the dual reformulation (C.11), as provided

by the following proof.

Proof of Theorem C.1. (Sufficiency,⇐) If there exists a feasible point (τ, λ1, λ2) for (C.2),
weak duality implies that it is an upper bound on τ? by construction.

(Necessity, ⇒) For any τ such that there exists no λ1, λ2 ≥ 0 for which (τ, λ1, λ2) is
feasible for (C.2), it follows that τ ≤ τ?, and strong duality implies that there exists a
problem instance (f ∈ Fµ,L, d ∈ N, and xk ∈ Rd) on which ‖xk+1−x?‖22 = τ?‖xk−x?‖22 ≥
τ‖xk − x?‖22.

Remark C.2. Following similar lines as those of this section, one can verify other types
of inequalities, beyond (C.1), simply by changing the objective in (C.5). This allows
obtaining the statement from Theorem C.2 and Theorem C.3.

Remark C.3. Finding analytical solutions to such LMIs (parametrized by the algorithm
and problem parameters) might be challenging. For gradient descent, the solution is
provided in e.g., (Lessard et al., 2016, Section 4.4) and (Taylor et al., 2018b, Theorem 3.1).
For more complicated cases, one can rely on numerical inspiration for finding analytical
solutions (or upper bounds on it).

Remark C.4. It is possible to obtain “weaker” LMIs based on other sets of inequalities
(which are necessary but not sufficient for interpolation). Those LMIs are then only
sufficient for finding worst-case guarantees. Those alternate LMIs might enjoy simpler
analytical solutions, but this comes at the cost of loosing a priori tightness guarantees.
This is in general not a problem if the worst-case guarantee is satisfying, but the subtle
consequence is that those LMIs might then fail to provide a satisfying guarantee even
when there exists one.

C.3.2 Potential Function for Gradient Descent

For formulating the LMI for verifying potential functions as those of Theorem 4.2 and
Theorem 4.10, one essentially has to follow the same steps as in the previous section. The
strongly convex version is a bit heavy and is provided below. In short, verifying that

φk , Ak(f(xk)− f?) + L+µAk
2 ‖xk − x?‖22

is a potential function, that is, φk+1 ≤ φk (for all f ∈ Fµ,L, d ∈ N, and xk ∈ Rd), amount
to verify that

0 ≥ max {φk+1 − φk : d ∈ N, f ∈ Fµ,L, xk, xk+1, x? ∈ Rd,
xk+1 = xk − γk∇f(xk), and ∇f(x?) = 0} ,

168 On Worst-case Analyses for First-order Methods

where the maximum is taken over d, f , xk, xk+1 and x?. This problem can be reformulated
as in Section C.3 using the same technique with more samples. More precisely, this
formulation requires sampling the function f at three points (instead of two): x?, xk, and
xk+1, and hence 6 dual variables are required (because 6 inequalities of the form (C.7)
are used for describing the sampled version of the function f). The formal statement is
provided by the following theorem, without a proof.

Theorem C.5. Let Ak+1, Ak ≥ 0 and γk ∈ R. The inequality

Ak+1(f(xk+1)− f?) + L+µAk+1
2 ‖xk+1 − x?‖22

≤ Ak(f(xk)− f?) + L+µAk
2 ‖xk − x?‖22

holds for all d ∈ N, all f ∈ Fµ,L(Rd), all xk, xk+1, x? ∈ Rd (such that xk+1 = xk−γk∇f(xk)
and ∇f(x?) = 0) if and only if

∃λ1, λ2, . . . , λ6 ≥ 0 :



0 = Ak + λ1 + λ2 − λ4 − λ6
0 = −Ak+1 − λ2 + λ3 + λ4 − λ5

0 �

S1,1 S1,2 S1,3
S1,2 S2,2 S2,3
S1,3 S2,3 S3,3

 ,
with

S1,1 = 1
2µ
(
Ak −Ak+1 + L(λ1+λ3+λ5+λ6)

L−µ

)
S1,2 = −γk(µAk+1(µ−L)+L(µ(λ3+λ5+1)−L))+λ6µ+λ1L

2(L−µ)

S1,3 = −λ5µ+λ3L
2(L−µ)

S2,2 = γ2
k(µAk+1(µ−L)+L(µ(λ2+λ3+λ4+λ5+1)−L))−2γk(λ4µ+λ2L)+λ1+λ2+λ4+λ6

2(L−µ)

S2,3 = γk(µ(λ2+λ5)+L(λ3+λ4))−λ2−λ4
2(L−µ)

S3,3 = λ2+λ3+λ4+λ5
2(L−µ) .

Note again that a notebook is provided in Section C.5 for obtaining and verifying
this LMI formulation via symbolic computations.

C.4 Accelerated Gradient Descent via Linear Matrix Inequalities

We provide the main ideas for formulating the LMI for verifying potential functions as
those of Theorem 4.10 and Theorem 4.12. In short, verifying that

φk , Ak(f(xk)− f?) + L+µAk
2 ‖zk − x?‖22

is a potential function, that is, φk+1 ≤ φk (for all f ∈ Fµ,L, d ∈ N, and xk, zk, x? ∈ Rd,
∇f(x?) = 0), amounts to verify that

0 ≥ max {φk+1 − φk : d ∈ N, f ∈ Fµ,L, zk, xk, x? ∈ Rd, ∇f(x?) = 0,

and yk, xk+1, zk+1 ∈ Rd generated by (4.17)
}
,

C.5. Notes and References 169

where the maximum is taken over d, f , the iterates, as well as x?. This problem can be
cast as a SDP using the same ideas as in Section C.3 with more samples, again. More
precisely, this formulation requires sampling the function f at four points: x?, xk, xk+1,
and yk. The case µ = 0 is covered by Theorem C.3.

C.5 Notes and References

General frameworks. The whole idea of using semidefinite programming for analyzing
first-order methods dates back to (Drori and Teboulle, 2014) (more details and examples
in (Drori, 2014; Drori and Teboulle, 2016)). The principled approach to worst-case
analysis using performance estimation problems with interpolation/extension arguments
was proposed in in (Taylor et al., 2017c), and generalized to more problem setups
in (Taylor et al., 2017a). The integral quadratic approach to first-order methods was
proposed in (Lessard et al., 2016), specifically for studying linearly converging methods
(focus on strong convexity and related notions). Those two related methodologies were
then further extended and linked in different setup (Hu and Lessard, 2017; Hu et al.,
2017; Taylor et al., 2018a; Fazlyab et al., 2018; Taylor and Bach, 2019; Lieder, 2021;
Aybat et al., 2020; Hu et al., 2021; Ryu and Yin, 2020; Dragomir et al., 2021). Among
those developments, some works performed analyses via “weaker” LMIs, based on other
sets of inequalities which are necessary but not sufficient for interpolation; see, e.g., (Park
and Ryu, 2021). The advantage of this approach is that it is often simpler to obtain
analytical solutions to some of those LMIs, at the cost of loosing tightness guarantees
(which might not be a problem when the guarantee is satisfying). This is in general the
case for IQC-based works. In those cases, non-tightness is usually coupled with the search
for a Lyapunov function. In general, it is possible to simultaneously look for a tight
guarantee and a Lyapunov/potential function, see e.g., (Taylor et al., 2018a; Taylor and
Bach, 2019). A simplified approach to performance estimation problems was implemented
in the performance estimation toolbox (Taylor et al., 2017b, PESTO).

Designing methods using semidefinite programming. The optimized gradient method
(OGM) was apparently the first method obtained by optimizing its worst-case using
SDPs/LMIs. It was obtained as a solution to a convex optimization problem by Drori and
Teboulle (2014), which was later solved analytically by Kim and Fessler (2016). The same
method was obtained through an analogy with the conjugate gradient method (Drori and
Taylor, 2020), which might serve as a strategy for designing method in various setups.
Optimized methods can be developed for other criteria and setups as well. As an example,
optimized methods for gradient norms ‖∇f(xN)‖22 are studied in Kim and Fessler (2020)
and Kim and Fessler (2018c), in the smooth convex setting. See also Section 4.6.1 and
Section 4.6.2; in particular, the Triple Momentum Method (TMM) (Van Scoy et al.,
2017) was designed as a time-independent optimized gradient method, through Lyapunov
arguments (and IQCs). See also (Lessard and Seiler, 2020; Zhou et al., 2020; Gramlich
et al., 2020; Drori and Taylor, 2021) for different ways of recovering the TMM. Optimized

170 On Worst-case Analyses for First-order Methods

methods were also developed in other setups, such as fixed-point iteration (Lieder, 2021)
and monotone inclusions (Kim, 2021) (which turned out to be a particular case of (Lieder,
2021)).

Specific methods. The SDP/LMI approaches were taken further for studying first-order
methods in a few different contexts. It was originally used for studying gradient-type
methods (see, e.g., (Drori and Teboulle, 2014; Drori, 2014; Lessard et al., 2016; Taylor
et al., 2017c)) and accelerated/fast gradient-type methods (see, e.g., (Drori and Teboulle,
2014; Drori, 2014; Lessard et al., 2016; Taylor et al., 2017c; Taylor et al., 2017a; Hu and
Lessard, 2017; Van Scoy et al., 2017; Cyrus et al., 2018; Safavi et al., 2018; Aybat et al.,
2020)) for convex minimization. It was used later for analyzing, among others, nonsmooth
setups (Drori and Teboulle, 2016; Drori and Taylor, 2020), stochastic (Hu et al., 2017; Hu
et al., 2018; Taylor and Bach, 2019; Hu et al., 2021), coordinate-descent (Shi and Liu, 2017;
Taylor and Bach, 2019), nonconvex setups (Abbaszadehpeivasti et al., 2021b; Abbaszadeh-
peivasti et al., 2021a), proximal methods (Taylor et al., 2017a; Kim and Fessler, 2018b;
Kim and Fessler, 2020; Barré et al., 2020a), splitting methods (Ryu and Vũ, 2020; Ryu
et al., 2020; Taylor et al., 2018b), monotone inclusions and variational inequalities (Ryu
et al., 2020; Gu and Yang, 2019; Gu and Yang, 2020; Zhang et al., 2021), fixed-point
iterations (Lieder, 2021), and distributed/decentralized optimization (Sundararajan et al.,
2020; Colla and Hendrickx, 2021).

Obtaining and solving the LMIs. For solving the LMIs, standard numerical semidefinite
optimization packages can be used, see, e.g., (Lofberg, 2004; Sturm, 1999; Mosek, 2010;
Toh et al., 2012). For obtaining and verifying analytical solutions, symbolic computing
might also be a great asset. For the purpose of reproducibility, we provide notebooks
for obtaining the LMI formulations of this section symbolically, and for solving them
numerically, at https://github.com/AdrienTaylor/AccelerationMonograph.

https://github.com/AdrienTaylor/AccelerationMonograph

Acknowledgements

The authors would like to warmly thank Raphaël Berthier, Mathieu Barré, Aymeric
Dieuleveut, Fabian Pedregosa and Baptiste Goujaud for comments on early versions of
this manuscript; for spotting a few typos; and for discussions and developments related
to Section 2, Section 4, and Section 5. We are also greatly indebted to Lenaïc Chizat,
Laurent Condat, Jelena Diakonikolas, Alexander Gasnikov, Shuvomoy Das Gupta, Pontus
Giselsson, Cristóbal Guzmán, Julien Mairal, and Irène Waldspurger for spotting a few
typos and inconsistencies in the first version of the manuscript.

We further want to thank Francis Bach, Sébastien Bubeck, Radu-Alexandru Dragomir,
Yoel Drori, Hadrien Hendrikx, Reza Babanezhad, Claude Brezinski, Pavel Dvurechensky,
Hervé Le Ferrand, Georges Lan, Adam Ouorou, Michela Redivo-Zaglia, Simon Lacoste-
Julien, Vincent Roulet, and Ernest Ryu for fruitful discussions and pointers, which largely
simplified the writing and revision process of this manuscript.

AA is also extremely grateful to the French ministry of education and école Etienne
Marcel for keeping school mostly open during the 2020-2021 pandemic.

AA is at the Département d’informatique de l’ENS, École normale supérieure, UMR
CNRS 8548, PSL Research University, 75005 Paris, France and INRIA. AA would like to
acknowledge support from the ML and Optimisation joint research initiative with the
funds AXA pour la Recherche and Kamet Ventures, a Google focused award, as well as
funding from the French government under the management of the Agence Nationale de
la Recherche as part of the “Investissements d’avenir” program, reference ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute). AT is at INRIA and the Département d’informatique de
l’ENS, École normale supérieure, CNRS, PSL Research University, 75005 Paris, France.
AT acknowledges support from the European Research Council (ERC grant SEQUOIA
724063).

171

References

Abbaszadehpeivasti, H., E. de Klerk, and M. Zamani. 2021a. “On the rate of convergence
of the Difference-of-Convex Algorithm (DCA)”. reprint arXiv:2109.13566.

Abbaszadehpeivasti, H., E. de Klerk, and M. Zamani. 2021b. “The exact worst-case con-
vergence rate of the gradient method with fixed step lengths for L-smooth functions”.
Optimization Letters.

Aitken, A. C. 1927. “On Bernoulli’s Numerical Solution of Algebraic Equations”. Pro-
ceedings of the Royal Society of Edinburgh. 46: 289–305.

Allen-Zhu, Z. 2017. “Katyusha: The first direct acceleration of stochastic gradient meth-
ods”. The Journal of Machine Learning Research (JMLR). 18(1): 8194–8244.

Allen-Zhu, Z. and L. Orecchia. 2017. “Linear Coupling: An Ultimate Unification of
Gradient and Mirror Descent”. In: Proceedings of the 8th Innovations in Theoretical
Computer Science Conference (ITCS).

Anderson, D. G. 1965. “Iterative procedures for nonlinear integral equations”. Journal of
the ACM (JACM). 12(4): 547–560.

Anderson, E. J. and P. Nash. 1987. Linear programming in infinite-dimensional spaces.
Edward J. Anderson, Peter Nash. Chichester: Wiley.

Armijo, L. 1966. “Minimization of functions having Lipschitz continuous first partial
derivatives”. Pacific Journal of mathematics. 16(1): 1–3.

Attouch, H., Z. Chbani, J. Peypouquet, and P. Redont. 2018. “Fast convergence of
inertial dynamics and algorithms with asymptotic vanishing viscosity”. Mathematical
Programming. 168(1): 123–175.

Auslender, A. and M. Teboulle. 2006. “Interior gradient and proximal methods for convex
and conic optimization”. SIAM Journal on Optimization. 16(3): 697–725.

Aybat, N. S., A. Fallah, M. Gurbuzbalaban, and A. Ozdaglar. 2019. “A Universally
Optimal Multistage Accelerated Stochastic Gradient Method”. In: Advances in Neural
Information Processing Systems (NeurIPS).

172

References 173

Aybat, N. S., A. Fallah, M. Gurbuzbalaban, and A. Ozdaglar. 2020. “Robust acceler-
ated gradient methods for smooth strongly convex functions”. SIAM Journal on
Optimization. 30(1): 717–751.

Baes, M. 2009. “Estimate sequence methods: extensions and approximations”. url:
http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf.

Bansal, N. and A. Gupta. 2019. “Potential-function proofs for gradient methods”. Theory
of Computing. 15(1): 1–32.

Barré, M., A. Taylor, and F. Bach. 2020a. “Principled Analyses and Design of First-Order
Methods with Inexact Proximal Operators”. arXiv:2006.06041.

Barré, M., A. Taylor, and F. Bach. 2021. “A note on approximate accelerated forward-
backward methods with absolute and relative errors, and possibly strongly convex
objectives”. arXiv:2106.15536.

Barré, M., A. Taylor, and A. d’Aspremont. 2020b. “Convergence of constrained Anderson
acceleration”. arXiv:2010.15482.

Bauschke, H. H., J. Bolte, and M. Teboulle. 2016. “A descent Lemma beyond Lipschitz
gradient continuity: first-order methods revisited and applications”. Mathematics of
Operations Research. 42(2): 330–348.

Beck, A. and M. Teboulle. 2009a. “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems”. SIAM Journal on Imaging Sciences. 2(1): 183–202.

Beck, A. and M. Teboulle. 2003. “Mirror descent and nonlinear projected subgradient
methods for convex optimization”. Operations Research Letters. 31(3): 167–175.

Beck, A. and M. Teboulle. 2009b. “Fast gradient-based algorithms for constrained total
variation image denoising and deblurring problems”. IEEE Transactions on Image
Processing. 18(11): 2419–2434.

Becker, S. R., E. J. Candès, and M. C. Grant. 2011. “Templates for convex cone problems
with applications to sparse signal recovery”. Mathematical Programming Computation.
3(3): 165–218.

Ben-Tal, A. and A. S. Nemirovsky. 2001. Lectures on modern convex optimization :
analysis, algorithms, and engineering applications. MPS-SIAM series on optimization.
SIAM.

Bolte, J., A. Daniilidis, and A. Lewis. 2007. “The Lojasiewicz inequality for nonsmooth
subanalytic functions with applications to subgradient dynamical systems”. SIAM
Journal on Optimization. 17(4): 1205–1223.

Bolte, J., T. P. Nguyen, J. Peypouquet, and B. W. Suter. 2017. “From error bounds to
the complexity of first-order descent methods for convex functions”. Mathematical
Programming. 165(2): 471–507.

Bonnans, J.-F., J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. 2006. Numerical
optimization: theoretical and practical aspects. Springer Science & Business Media.

Bottou, L. and O. Bousquet. 2007. “The tradeoffs of large scale learning”. In: Advances
in Neural Information Processing Systems (NIPS).

http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf

174 References

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers”.
Foundations and Trends in Machine learning. 3(1): 1–122.

Boyd, S. and L. Vandenberghe. 2004. Convex optimization. Cambridge university press.
Brezinski, C. 1970. “Application de l’ε-algorithme à la résolution des systèmes non

linéaires”. Comptes Rendus de l’Académie des Sciences de Paris. 271(A): 1174–1177.
Brezinski, C. 1971. “Sur un algorithme de résolution des systèmes non linéaires”. Comptes

Rendus de l’Académie des Sciences de Paris. 272(A): 145–148.
Brezinski, C. 1975. “Généralisations de la transformation de Shanks, de la table de Padé

et de l’ε-algorithme”. Calcolo. 12(4): 317–360.
Brezinski, C. 2001. “Convergence acceleration during the 20th century”. Numerical

Analysis: Historical Developments in the 20th Century: 113.
Brezinski, C., S. Cipolla, M. Redivo-Zaglia, and Y. Saad. 2020. “Shanks and Anderson-

type acceleration techniques for systems of nonlinear equations”. arXiv:2007.05716.
Brezinski, C. and M. Redivo–Zaglia. 2019. “The genesis and early developments of

Aitken’s process, Shanks’ transformation, the ε–algorithm, and related fixed point
methods”. Numerical Algorithms. 80(1): 11–133.

Brezinski, C., M. Redivo-Zaglia, and Y. Saad. 2018. “Shanks sequence transformations
and Anderson acceleration”. SIAM Review. 60(3): 646–669.

Brezinski, C. and M. R. Zaglia. 1991. Extrapolation methods: theory and practice. Elsevier.
Bubeck, S. 2015. “Convex Optimization: Algorithms and Complexity”. Foundations and

Trends in Machine Learning. 8(3-4): 231–357.
Bubeck, S., Y. T. Lee, and M. Singh. 2015. “A geometric alternative to Nesterov’s

accelerated gradient descent”. arXiv:1506.08187.
Cabay, S. and L. Jackson. 1976. “A polynomial extrapolation method for finding limits

and antilimits of vector sequences”. SIAM Journal on Numerical Analysis. 13(5):
734–752.

Calatroni, L. and A. Chambolle. 2019. “Backtracking strategies for accelerated descent
methods with smooth composite objectives”. SIAM Journal on Optimization. 29(3):
1772–1798.

Cauchy, A. 1847. “Méthode générale pour la résolution des systemes d’équations si-
multanées”. Comptes Rendus de l’Académie des Sciences de Paris. 25(1847): 536–
538.

Chambolle, A. and T. Pock. 2016. “An introduction to continuous optimization for
imaging”. Acta Numerica. 25: 161–319.

Chen, S., S. Ma, and W. Liu. 2017. “Geometric descent method for convex composite
minimization”. In: Advances in Neural Information Processing Systems (NIPS).

Chierchia, G., E. Chouzenoux, P. L. Combettes, and J.-C. Pesquet. 2020. “The Proximity
Operator Repository. User’s guide”. url: http://proximity-operator.net/.

Clarke, F. H. 1990. Optimization and nonsmooth analysis. Vol. 5. SIAM.
Cohen, A., W. Dahmen, and R. DeVore. 2009. “Compressed sensing and best k-term

approximation”. Journal of the AMS. 22(1): 211–231.

http://proximity-operator.net/

References 175

Colla, S. and J. M. Hendrickx. 2021. “Automated Worst-Case Performance Analysis of
Decentralized Gradient Descent”. In: Proceedings of the 60th Conference on Decision
and Control (CDC).

Condat, L., D. Kitahara, A. Contreras, and A. Hirabayashi. 2019. “Proximal splitting
algorithms: A tour of recent advances, with new twists”. arXiv:1912.00137.

Cyrus, S., B. Hu, B. Van Scoy, and L. Lessard. 2018. “A robust accelerated optimization
algorithm for strongly convex functions”. In: Proceedings of the 2018 American Control
Conference (ACC).

d’Aspremont, A. 2008. “Smooth Optimization with Approximate Gradient”. SIAM
Journal on Optimization. 19(3): 1171–1183.

d’Aspremont, A., C. Guzman, and M. Jaggi. 2018. “Optimal affine-invariant smooth
minimization algorithms”. SIAM Journal on Optimization. 28(3): 2384–2405.

Davis, D., D. Drusvyatskiy, and V. Charisopoulos. 2019. “Stochastic algorithms with
geometric step decay converge linearly on sharp functions”. arXiv:1907.09547.

De Klerk, E., F. Glineur, and A. B. Taylor. 2020. “Worst-case convergence analysis of
inexact gradient and Newton methods through semidefinite programming performance
estimation”. SIAM Journal on Optimization. 30(3): 2053–2082.

De Klerk, E., F. Glineur, and A. B. Taylor. 2017. “On the worst-case complexity of
the gradient method with exact line search for smooth strongly convex functions”.
Optimization Letters. 11(7): 1185–1199.

Defazio, A., F. Bach, and S. Lacoste-Julien. 2014a. “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives”. In: Advances in
Neural Information Processing Systems (NIPS).

Defazio, A. J., T. S. Caetano, and J. Domke. 2014b. “Finito: A faster, permutable
incremental gradient method for big data problems”. In: Proceedings of the 31st
International Conference on Machine Learning (ICML).

Devolder, O. 2011. “Stochastic first order methods in smooth convex optimization”.
Tech. rep. CORE discussion paper.

Devolder, O. 2013. “Exactness, inexactness and stochasticity in first-order methods for
large-scale convex optimization”. PhD thesis.

Devolder, O., F. Glineur, and Y. Nesterov. 2013. “Intermediate gradient methods for
smooth convex problems with inexact oracle”. Tech. rep. CORE discussion paper.

Devolder, O., F. Glineur, and Y. Nesterov. 2014. “First-order methods of smooth convex
optimization with inexact oracle”. Mathematical Programming. 146(1-2): 37–75.

Diakonikolas, J. and C. Guzmán. 2021. “Complementary Composite Minimization,
Small Gradients in General Norms, and Applications to Regression Problems”.
arXiv:2101.11041.

Diakonikolas, J. and L. Orecchia. 2019a. “Conjugate gradients and accelerated methods
unified: The approximate duality gap view”. arXiv:1907.00289.

Diakonikolas, J. and L. Orecchia. 2019b. “The approximate duality gap technique: A
unified theory of first-order methods”. SIAM Journal on Optimization. 29(1): 660–689.

176 References

Diakonikolas, J. and P. Wang. 2021. “Potential Function-based Framework for Making
the Gradients Small in Convex and Min-Max Optimization”. arXiv:2101.12101.

Douglas, J. and H. H. Rachford. 1956. “On the numerical solution of heat conduction prob-
lems in two and three space variables”. Transactions of the American mathematical
Society. 82(2): 421–439.

Dragomir, R.-A., A. B. Taylor, A. d’Aspremont, and J. Bolte. 2021. “Optimal complexity
and certification of Bregman first-order methods”. Mathematical Programming: 1–43.

Drori, Y. 2014. “Contributions to the Complexity Analysis of Optimization Algorithms”.
PhD thesis. Tel-Aviv University.

Drori, Y. 2017. “The exact information-based complexity of smooth convex minimization”.
Journal of Complexity. 39: 1–16.

Drori, Y. 2018. “On the properties of convex functions over open sets”. arXiv:1812.02419.
Drori, Y. and A. Taylor. 2021. “On the oracle complexity of smooth strongly convex

minimization”. Journal of Complexity.
Drori, Y. and A. B. Taylor. 2020. “Efficient first-order methods for convex minimization:

a constructive approach”. Mathematical Programming. 184(1): 183–220.
Drori, Y. and M. Teboulle. 2014. “Performance of first-order methods for smooth convex

minimization: a novel approach”. Mathematical Programming. 145(1-2): 451–482.
Drori, Y. and M. Teboulle. 2016. “An optimal variant of Kelley’s cutting-plane method”.

Mathematical Programming. 160(1-2): 321–351.
Drusvyatskiy, D., M. Fazel, and S. Roy. 2018. “An optimal first order method based on

optimal quadratic averaging”. SIAM Journal on Optimization. 28(1): 251–271.
Dvurechensky, P. and A. Gasnikov. 2016. “Stochastic intermediate gradient method for

convex problems with stochastic inexact oracle”. Journal of Optimization Theory and
Applications. 171(1): 121–145.

Eckstein, J. 1989. “Splitting methods for monotone operators with applications to parallel
optimization”. PhD thesis. Massachusetts Institute of Technology.

Eckstein, J. and P. J. Silva. 2013. “A practical relative error criterion for augmented
Lagrangians”. Mathematical Programming. 141(1-2): 319–348.

Eckstein, J. and W. Yao. 2012. “Augmented Lagrangian and alternating direction methods
for convex optimization: A tutorial and some illustrative computational results”.
RUTCOR Research Reports. 32(3).

Eddy, R. 1979. “Extrapolating to the limit of a vector sequence”. In: Information linkage
between applied mathematics and industry. Elsevier. 387–396.

Even, M., R. Berthier, F. Bach, N. Flammarion, P. Gaillard, H. Hendrikx, L. Massoulié,
and A. Taylor. 2021. “A Continuized View on Nesterov Acceleration for Stochastic
Gradient Descent and Randomized Gossip”. In: Advances in Neural Information
Processing Systems (NeurIPS).

Fang, H.-R. and Y. Saad. 2009. “Two classes of multisecant methods for nonlinear
acceleration”. Numerical Linear Algebra with Applications. 16(3): 197–221.

References 177

Fazlyab, M., A. Ribeiro, M. Morari, and V. M. Preciado. 2018. “Analysis of optimization
algorithms via integral quadratic constraints: Nonstrongly convex problems”. SIAM
Journal on Optimization. 28(3): 2654–2689.

Fercoq, O. and P. Richtárik. 2015. “Accelerated, parallel, and proximal coordinate
descent”. SIAM Journal on Optimization. 25(4): 1997–2023.

Fessler, J. A. 2020. “Optimization methods for magnetic resonance image reconstruction:
Key models and optimization algorithms”. IEEE Signal Processing Magazine. 37(1):
33–40. Complete version: http://arxiv.org/abs/1903.03510.

Fischer, B. 1996. “Polynomial Based Iteration Methods for Symmetric Linear Systems”.
Flanders, D. A. and G. Shortley. 1950. “Numerical determination of fundamental modes”.

Journal of Applied Physics. 21(12): 1326–1332.
Florea, M. I. and S. A. Vorobyov. 2018. “An accelerated composite gradient method for

large-scale composite objective problems”. IEEE Transactions on Signal Processing.
67(2): 444–459.

Florea, M. I. and S. A. Vorobyov. 2020. “A generalized accelerated composite gradient
method: Uniting Nesterov’s fast gradient method and FISTA”. IEEE Transactions
on Signal Processing.

Ford, W. F. and A. Sidi. 1988. “Recursive algorithms for vector extrapolation methods”.
Applied numerical mathematics. 4(6): 477–489.

Gasnikov, A., P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, and
C. Uribe. 2019. “Optimal Tensor Methods in Smooth Convex and Uniformly Convex
Optimization”. In: Proceedings of the 32nd Conference on Learning Theory (COLT).

Gasnikov, A. V. and Y. Nesterov. 2018. “Universal method for stochastic composite
optimization problems”. Computational Mathematics and Mathematical Physics. 58(1):
48–64.

Gekeler, E. 1972. “On the solution of systems of equations by the epsilon algorithm of
Wynn”. Mathematics of Computation. 26(118): 427–436.

Glowinski, R. and A. Marroco. 1975. “Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non
linéaires”. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique. 9(R2): 41–76.

Goldstein, A. 1962. “Cauchy’s method of minimization”. Numerische Mathematik. 4(1):
146–150.

Golub, G. H. and R. S. Varga. 1961a. “Chebyshev semi-iterative methods, successive
overrelaxation iterative methods, and second order Richardson iterative methods”.
Numerische Mathematik. 3(1): 147–156.

Golub, G. H. and R. S. Varga. 1961b. “Chebyshev semi-iterative methods, successive
overrelaxation iterative methods, and second order Richardson iterative methods”.
Numerische Mathematik. 3(1): 157–168.

Gorbunov, E., M. Danilova, and A. Gasnikov. 2020. “Stochastic Optimization with Heavy-
Tailed Noise via Accelerated Gradient Clipping”. In: Advances in Neural Information
Processing Systems (NeurIPS).

178 References

Gramlich, D., C. Ebenbauer, and C. W. Scherer. 2020. “Convex Synthesis of Accelerated
Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov
functions”. arXiv:2006.09946.

Gu, G. and J. Yang. 2019. “On the optimal ergodic sublinear convergence rate of the
relaxed proximal point algorithm for variational inequalities”. arXiv:1905.06030.

Gu, G. and J. Yang. 2020. “Tight sublinear convergence rate of the proximal point
algorithm for maximal monotone inclusion problems”. SIAM Journal on Optimization.
30(3): 1905–1921.

Güler, O. 1991. “On the convergence of the proximal point algorithm for convex mini-
mization”. SIAM Journal on Control and Optimization. 29(2): 403–419.

Güler, O. 1992. “New proximal point algorithms for convex minimization”. SIAM Journal
on Optimization. 2(4): 649–664.

Gutknecht, M. H. and S. Röllin. 2002. “The Chebyshev iteration revisited”. Parallel
Computing. 28(2): 263–283.

Gutman, D. H. and J. F. Peña. 2018. “A unified framework for Bregman proximal methods:
subgradient, gradient, and accelerated gradient schemes”. arXiv:1812.10198.

Guzmán, C. and A. S. Nemirovsky. 2015. “On lower complexity bounds for large-scale
smooth convex optimization”. Journal of Complexity. 31(1): 1–14.

Hanzely, F., P. Richtarik, and L. Xiao. 2021. “Accelerated Bregman proximal gradient
methods for relatively smooth convex optimization”. Computational Optimization
and Applications. 79(2): 405–440.

Hinder, O., A. Sidford, and N. Sohoni. 2020. “Near-Optimal Methods for Minimizing
Star-Convex Functions and Beyond”. In: Proceedings of the 33rd Conference on
Learning Theory (COLT).

Hiriart-Urruty, J.-B. and C. Lemaréchal. 2013. Convex analysis and minimization algo-
rithms I: Fundamentals. Vol. 305. Springer science & business media.

Hu, B. and L. Lessard. 2017. “Dissipativity theory for Nesterov’s accelerated method”.
In: Proceedings of the 34th International Conference on Machine Learning (ICML).

Hu, B., P. Seiler, and L. Lessard. 2021. “Analysis of biased stochastic gradient descent
using sequential semidefinite programs”. Mathematical Programming. 187(1): 383–408.

Hu, B., P. Seiler, and A. Rantzer. 2017. “A unified analysis of stochastic optimization
methods using jump system theory and quadratic constraints”. In: Proceedings of the
30th Conference on Learning Theory (COLT).

Hu, B., S. Wright, and L. Lessard. 2018. “Dissipativity theory for accelerating stochastic
variance reduction: A unified analysis of SVRG and Katyusha using semidefinite
programs”. In: Proceedings of the 35th International Conference on Machine Learning
(ICML).

Hu, C., W. Pan, and J. Kwok. 2009. “Accelerated gradient methods for stochastic
optimization and online learning”. In: Advances in Neural Information Processing
Systems (NIPS).

References 179

Ito, M. and M. Fukuda. 2021. “Nearly optimal first-order methods for convex optimization
under gradient norm measure: An adaptive regularization approach”. Journal of
Optimization Theory and Applications: 1–35.

Iusem, A. N. 1999. “Augmented Lagrangian methods and proximal point methods for
convex optimization”. Investigación Operativa. 8(11-49): 7.

Ivanova, A., D. Grishchenko, A. Gasnikov, and E. Shulgin. 2019. “Adaptive Catalyst for
smooth convex optimization”. arXiv:1911.11271.

Jbilou, K. and H. Sadok. 2000. “Vector extrapolation methods. Applications and numerical
comparison”. Journal of Computational and Applied Mathematics. 122(1-2): 149–165.

Jbilou, K. and H. Sadok. 1991. “Some results about vector extrapolation methods and
related fixed-point iterations”. Journal of Computational and Applied Mathematics.
36(3): 385–398.

Jbilou, K. and H. Sadok. 1995. “Analysis of some vector extrapolation methods for solving
systems of linear equations”. Numerische Mathematik. 70(1): 73–89.

Johnson, R. and T. Zhang. 2013. “Accelerating stochastic gradient descent using predictive
variance reduction”. In: Advances in Neural Information Processing Systems (NIPS).

Juditsky, A., G. Lan, A. S. Nemirovsky, and A. Shapiro. 2009. “Stochastic Approximation
Approach to Stochastic Programming”. SIAM Journal on Optimization. 19(4): 1574–
1609.

Juditsky, A. and A. S. Nemirovsky. 2011a. “First order methods for nonsmooth convex
large-scale optimization, i: general purpose methods”. Optimization for Machine
Learning. 30(9): 121–148.

Juditsky, A. and A. S. Nemirovsky. 2011b. “First order methods for nonsmooth convex
large-scale optimization, ii: utilizing problems structure”. Optimization for Machine
Learning. 30(9): 149–183.

Juditsky, A. and Y. Nesterov. 2014. “Deterministic and stochastic primal-dual subgradient
algorithms for uniformly convex minimization”. Stochastic Systems. 4(1): 44–80.

Karimi, S. and S. Vavasis. 2017. “A single potential governing convergence of conjugate
gradient, accelerated gradient and geometric descent”. arXiv:1712.09498.

Karimi, S. and S. A. Vavasis. 2016. “A unified convergence bound for conjugate gradient
and accelerated gradient”. arXiv:1605.00320.

Kerdreux, T., A. d’Aspremont, and S. Pokutta. 2019. “Restarting Frank-Wolfe”. In: Pro-
ceedings of the 22nd International Conference on Artificial Intelligence and Statistics
(AISTATS).

Kim, D. 2021. “Accelerated proximal point method for maximally monotone operators”.
Mathematical Programming: 1–31.

Kim, D. and J. A. Fessler. 2018a. “Adaptive restart of the optimized gradient method
for convex optimization”. Journal of Optimization Theory and Applications. 178(1):
240–263.

Kim, D. and J. A. Fessler. 2016. “Optimized first-order methods for smooth convex
minimization”. Mathematical Programming. 159(1-2): 81–107.

180 References

Kim, D. and J. A. Fessler. 2017. “On the convergence analysis of the optimized gradient
method”. Journal of Optimization Theory and Applications. 172(1): 187–205.

Kim, D. and J. A. Fessler. 2018b. “Another look at the fast iterative shrinkage/thresholding
algorithm (FISTA)”. SIAM Journal on Optimization. 28(1): 223–250.

Kim, D. and J. A. Fessler. 2018c. “Generalizing the optimized gradient method for smooth
convex minimization”. SIAM Journal on Optimization. 28(2): 1920–1950.

Kim, D. and J. A. Fessler. 2020. “Optimizing the efficiency of first-order methods for
decreasing the gradient of smooth convex functions”. Journal of Optimization Theory
and Applications.

Krichene, W., A. Bayen, and P. L. Bartlett. 2015. “Accelerated mirror descent in con-
tinuous and discrete time”. In: Advances in Neural Information Processing Systems
(NIPS).

Kulunchakov, A. and J. Mairal. 2019. “A Generic Acceleration Framework for Stochastic
Composite Optimization”. In: Advances in Neural Information Processing Systems
(NeurIPS).

Kulunchakov, A. and J. Mairal. 2020. “Estimate Sequences for Stochastic Composite
Optimization: Variance Reduction, Acceleration, and Robustness to Noise”. The
Journal of Machine Learning Research (JMLR). 21(155): 1–52.

Kurdyka, K. 1998. “On gradients of functions definable in o-minimal structures”. In:
Annales de l’institut Fourier. Vol. 48. No. 3. 769–783.

Lacoste-Julien, S. and M. Jaggi. 2015. “On the global linear convergence of Frank-
Wolfe optimization variants”. In: Advances in Neural Information Processing Systems
(NIPS).

Lacotte, J. and M. Pilanci. 2020. “Optimal randomized first-order methods for least-
squares problems”. In: Proceedings of the 37th International Conference on Machine
Learning (ICML).

Lan, G. 2008. “Efficient Methods for stochastic composite optimization”. Tech. rep.
School of Industrial and Systems Engineering, Georgia Institute of Technology. url:
http://www.optimization-online.org/DB_HTML/2008/08/2061.html.

Lan, G. 2012. “An optimal method for stochastic composite optimization”. Mathematical
Programming. 133(1-2): 365–397.

Lan, G., Z. Lu, and R. D. Monteiro. 2011. “Primal-dual first-order methods with O(1/ε)
iteration-complexity for cone programming”. Mathematical Programming. 126(1):
1–29.

Lee, J., C. Park, and E. K. Ryu. 2021. “A Geometric Structure of Acceleration and Its
Role in Making Gradients Small Fast”. arXiv:2106.10439.

Lee, Y. T. and A. Sidford. 2013. “Efficient accelerated coordinate descent methods and
faster algorithms for solving linear systems”. In: 54th Symposium on Foundations of
Computer Science. 147–156.

Lemaréchal, C. and C. Sagastizábal. 1997. “Practical Aspects of the Moreau–Yosida
Regularization: Theoretical Preliminaries”. SIAM Journal on Optimization. 7(2):
367–385.

http://www.optimization-online.org/DB_HTML/2008/08/2061.html

References 181

Lessard, L., B. Recht, and A. Packard. 2016. “Analysis and design of optimization
algorithms via integral quadratic constraints”. SIAM Journal on Optimization. 26(1):
57–95.

Lessard, L. and P. Seiler. 2020. “Direct synthesis of iterative algorithms with bounds
on achievable worst-case convergence rate”. In: Proceedings of the 2020 American
Control Conference (ACC).

Li, G. and T. K. Pong. 2018. “Calculus of the exponent of Kurdyka–Łojasiewicz inequality
and its applications to linear convergence of first-order methods”. Foundations of
computational mathematics. 18(5): 1199–1232.

Lieder, F. 2021. “On the convergence rate of the Halpern-iteration”. Optimization Letters.
15(2): 405–418.

Lin, H., J. Mairal, and Z. Harchaoui. 2015. “A universal catalyst for first-order optimiza-
tion”. In: Advances in Neural Information Processing Systems (NIPS).

Lin, H., J. Mairal, and Z. Harchaoui. 2018. “Catalyst acceleration for first-order convex
optimization: from theory to practice”. The Journal of Machine Learning Research
(JMLR). 18(1): 7854–7907.

Lions, P.-L. and B. Mercier. 1979. “Splitting algorithms for the sum of two nonlinear
operators”. SIAM Journal on Numerical Analysis. 16(6): 964–979.

Lofberg, J. 2004. “YALMIP: A toolbox for modeling and optimization in MATLAB”.
In: 2004 IEEE international conference on robotics and automation (IEEE Cat. No.
04CH37508). IEEE. 284–289.

Lojasiewicz, S. 1963. “Une propriété topologique des sous-ensembles analytiques réels”.
Les équations aux dérivées partielles: 87–89.

Lu, H., R. M. Freund, and Y. Nesterov. 2018. “Relatively smooth convex optimization
by first-order methods, and applications”. SIAM Journal on Optimization. 28(1):
333–354.

Luo, Z.-Q. and P. Tseng. 1992. “On the linear convergence of descent methods for convex
essentially smooth minimization”. SIAM Journal on Control and Optimization. 30(2):
408–425.

Mai, V. and M. Johansson. 2020. “Anderson acceleration of proximal gradient methods”.
In: Proceedings of the 37th International Conference on Machine Learning (ICML).

Mairal, J. 2015. “Incremental majorization-minimization optimization with application
to large-scale machine learning”. SIAM Journal on Optimization. 25(2): 829–855.

Mairal, J. 2019. “Cyanure: An Open-Source Toolbox for Empirical Risk Minimization for
Python, C++, and soon more”. arXiv:1912.08165.

Malitsky, Y. and K. Mishchenko. 2020. “Adaptive Gradient Descent without Descent”.
In: Proceedings of the 37th International Conference on Machine Learning (ICML).

Martinet, B. 1970. “Régularisation d’inéquations variationnelles par approximations
successives”. Revue Française d’Informatique et de Recherche Opérationnelle. 4: 154–
158.

182 References

Martinet, B. 1972. “Détermination approchée d’un point fixe d’une application pseudo-
contractante. Cas de l’application prox.” Comptes Rendus de l’Académie des Sciences
de Paris. 274: 163–165.

Mason, J. C. and D. C. Handscomb. 2002. Chebyshev polynomials. CRC press.
Megretski, A. and A. Rantzer. 1997. “System analysis via integral quadratic constraints”.

IEEE Transactions on Automatic Control. 42(6): 819–830.
Mešina, M. 1977. “Convergence acceleration for the iterative solution of the equations

X = AX + f”. Computer Methods in Applied Mechanics and Engineering. 10(2):
165–173.

Mifflin, R. 1977. “Semismooth and semiconvex functions in constrained optimization”.
SIAM Journal on Control and Optimization. 15(6): 959–972.

Monteiro, R. D. and B. F. Svaiter. 2013. “An accelerated hybrid proximal extragradient
method for convex optimization and its implications to second-order methods”. SIAM
Journal on Optimization. 23(2): 1092–1125.

Moreau, J.-J. 1962. “Fonctions convexes duales et points proximaux dans un espace
hilbertien”. Comptes Rendus de l’Académie des Sciences de Paris. 255: 2897–2899.

Moreau, J.-J. 1965. “Proximité et dualité dans un espace hilbertien”. Bulletin de la
Société mathématique de France. 93: 273–299.

Mosek, A. 2010. “The MOSEK optimization software”. url: http://www.mosek.com.
Narkiss, G. and M. Zibulevsky. 2005. Sequential subspace optimization method for large-

scale unconstrained problems. Technion-IIT, Department of Electrical Engineering.
Necoara, I., Y. Nesterov, and F. Glineur. 2019. “Linear convergence of first order methods

for non-strongly convex optimization”. Mathematical Programming. 175(1-2): 69–107.
Nemirovsky, A. S. and D. Yudin. 1983a. Problem complexity and method efficiency in

optimization.
Nemirovsky, A. S. 1982. “Orth-method for smooth convex optimization”. Izvestia AN

SSSR, Transl.: Eng. Cybern. Soviet J. Comput. Syst. Sci. 2: 937–947.
Nemirovsky, A. S. 1991. “On optimality of Krylov’s information when solving linear

operator equations”. Journal of Complexity. 7(2): 121–130.
Nemirovsky, A. S. 1992. “Information-based complexity of linear operator equations”.

Journal of Complexity. 8(2): 153–175.
Nemirovsky, A. S. 1994. “Information-based complexity of convex programming”. Lecture

notes.
Nemirovsky, A. S. and Y. Nesterov. 1985. “Optimal methods of smooth convex min-

imization”. USSR Computational Mathematics and Mathematical Physics. 25(2):
21–30.

Nemirovsky, A. S. and B. T. Polyak. 1984. “Iterative methods for solving linear ill-posed
problems under precise information.” ENG. CYBER. (4): 50–56.

Nemirovsky, A. S. and D. B. Yudin. 1983b. “Information-based complexity of mathemati-
cal programming (in Russian)”. Izvestia AN SSSR, Ser. Tekhnicheskaya Kibernetika
(the journal is translated to English as Engineering Cybernetics. Soviet J. Computer
& Systems Sci.) 1.

http://www.mosek.com

References 183

Nemirovsky, A. S. and D. B. Yudin. 1983c. “Problem Complexity and Method Efficiency
in Optimization.” Willey-Interscience, New York.

Nesterov, Y. 1983. “A method of solving a convex programming problem with convergence
rate O(1/k2)”. Soviet Mathematics Doklady. 27(2): 372–376.

Nesterov, Y. 2003. Introductory Lectures on Convex Optimization. Springer.
Nesterov, Y. 2005. “Smooth minimization of non-smooth functions”. Mathematical Pro-

gramming. 103(1): 127–152.
Nesterov, Y. 2009. “Primal-dual subgradient methods for convex problems”. Mathematical

programming Series B. 120(1): 221–259.
Nesterov, Y. 2013. “Gradient methods for minimizing composite functions”. Mathematical

Programming. 140(1): 125–161.
Nesterov, Y. 2015. “Universal gradient methods for convex optimization problems”.

Mathematical Programming. 152(1-2): 381–404.
Nesterov, Y. 2008. “Accelerating the cubic regularization of Newton’s method on convex

problems”. Mathematical Programming. 112(1): 159–181.
Nesterov, Y. 2012a. “Efficiency of coordinate descent methods on huge-scale optimization

problems”. SIAM Journal on Optimization. 22(2): 341–362.
Nesterov, Y. 2012b. “How to make the gradients small”. Optima. Mathematical Opti-

mization Society Newsletter. (88): 10–11.
Nesterov, Y. 2019. “Implementable tensor methods in unconstrained convex optimization”.

Mathematical Programming: 1–27.
Nesterov, Y. 2020a. “Inexact accelerated high-order proximal-point methods”. Tech. rep.

CORE discussion paper.
Nesterov, Y. 2020b. “Inexact high-order proximal-point methods with auxiliary search

procedure”. Tech. rep. CORE discussion paper.
Nesterov, Y. and B. T. Polyak. 2006. “Cubic regularization of Newton method and its

global performance”. Mathematical Programming. 108(1): 177–205.
Nesterov, Y. and V. Shikhman. 2015. “Quasi-monotone subgradient methods for non-

smooth convex minimization”. Journal of Optimization Theory and Applications.
165(3): 917–940.

Nesterov, Y. and S. U. Stich. 2017. “Efficiency of the accelerated coordinate descent
method on structured optimization problems”. SIAM Journal on Optimization. 27(1):
110–123.

Nocedal, J. and S. Wright. 2006. Numerical optimization. Springer Science & Business
Media.

O’Donoghue, B. and E. Candes. 2015. “Adaptive restart for accelerated gradient schemes”.
Foundations of computational mathematics. 15(3): 715–732.

Paige, C. C. and M. A. Saunders. 1975. “Solution of sparse indefinite systems of linear
equations”. SIAM journal on numerical analysis. 12(4): 617–629.

Pang, J.-S. 1987. “A posteriori error bounds for the linearly-constrained variational
inequality problem”. Mathematics of Operations Research. 12(3): 474–484.

184 References

Paquette, C., H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui. 2018. “Catalyst for
Gradient-based Nonconvex Optimization”. In: Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics (AISTATS).

Parikh, N. and S. Boyd. 2014. “Proximal algorithms”. Foundations and Trends in Opti-
mization. 1(3): 127–239.

Park, C., J. Park, and E. K. Ryu. 2021. “Factor-
√

2 Acceleration of Accelerated Gradient
Methods”. arXiv:2102.07366.

Park, C. and Ryu. 2021. “Optimal First-Order Algorithms as a Function of Inequalities”.
arXiv:2110.11035.

Passty, G. B. 1979. “Ergodic convergence to a zero of the sum of monotone operators in
Hilbert space”. Journal of Mathematical Analysis and Applications. 72(2): 383–390.

Pedregosa, F. and D. Scieur. 2020. “Acceleration through spectral density estimation”.
In: Proceedings of the 37th International Conference on Machine Learning (ICML).

Peyré, G. 2011. “The numerical tours of signal processing-advanced computational signal
and image processing”. IEEE Computing in Science and Engineering. 13(4): 94–97.

Qi, L. and J. Sun. 1993. “A nonsmooth version of Newton’s method”. Mathematical
programming. 58(1-3): 353–367.

Robbins, H. and S. Monro. 1951. “A stochastic approximation method”. The annals of
mathematical statistics: 400–407.

Rockafellar, R. T. 1973. “A dual approach to solving nonlinear programming problems
by unconstrained optimization”. Mathematical Programming. 5(1): 354–373.

Rockafellar, R. T. 1970. Convex Analysis. Princeton.: Princeton University Press.
Rockafellar, R. T. 1976. “Augmented Lagrangians and applications of the proximal point

algorithm in convex programming”. Mathematics of operations research. 1(2): 97–116.
Rockafellar, R. T. and R. J.-B. Wets. 2009. Variational analysis. Vol. 317. Springer

Science & Business Media.
Roulet, V. and A. d’Aspremont. 2017. “Sharpness, restart and acceleration”. In: Advances

in Neural Information Processing Systems (NIPS).
Ryu, E. K. and S. Boyd. 2016. “Primer on monotone operator methods”. Appl. Comput.

Math. 15(1): 3–43.
Ryu, E. K., A. B. Taylor, C. Bergeling, and P. Giselsson. 2020. “Operator splitting

performance estimation: Tight contraction factors and optimal parameter selection”.
SIAM Journal on Optimization. 30(3): 2251–2271.

Ryu, E. K. and B. C. Vũ. 2020. “Finding the forward-Douglas–Rachford-forward method”.
Journal of Optimization Theory and Applications. 184(3): 858–876.

Ryu, E. K. and W. Yin. 2020. Large-Scale Convex Optimization via Monotone Operators.
Saad, Y. and M. H. Schultz. 1986. “GMRES: A generalized minimal residual algorithm

for solving nonsymmetric linear systems”. SIAM Journal on scientific and statistical
computing. 7(3): 856–869.

Safavi, S., B. Joshi, G. França, and J. Bento. 2018. “An Explicit Convergence Rate for
Nesterov’s Method from SDP”. In: IEEE International Symposium on Information
Theory (ISIT). 1560–1564.

References 185

Salzo, S. and S. Villa. 2012. “Inexact and accelerated proximal point algorithms”. Journal
of Convex analysis. 19(4): 1167–1192.

Sanz Serna, J. M. and K. C. Zygalakis. 2021. “The connections between Lyapunov
functions for some optimization algorithms and differential equations”. SIAM Journal
on Numerical Analysis. 59(3): 1542–1565.

Scheinberg, K., D. Goldfarb, and X. Bai. 2014. “Fast first-order methods for composite
convex optimization with backtracking”. Foundations of Computational Mathematics.
14(3): 389–417.

Schmidt, M., N. Le Roux, and F. Bach. 2011. “Convergence rates of inexact proximal-
gradient methods for convex optimization”. In: Advances in Neural Information
Processing Systems (NIPS).

Schmidt, M., N. Le Roux, and F. Bach. 2017. “Minimizing finite sums with the stochastic
average gradient”. Mathematical Programming. 162(1-2): 83–112.

Scieur, D., F. Bach, and A. d’Aspremont. 2017a. “Nonlinear acceleration of stochastic
algorithms”. In: Advances in Neural Information Processing Systems (NIPS).

Scieur, D., A. d’Aspremont, and F. Bach. 2016. “Regularized nonlinear acceleration”. In:
Advances in Neural Information Processing Systems (NIPS).

Scieur, D., E. Oyallon, A. d’Aspremont, and F. Bach. 2018. “Online Regularized Nonlinear
Acceleration”. arXiv:1805.09639.

Scieur, D. and F. Pedregosa. 2020. “Universal Asymptotic Optimality of Polyak Mo-
mentum”. In: Proceedings of the 37th International Conference on Machine Learning
(ICML).

Scieur, D., V. Roulet, F. Bach, and A. d’Aspremont. 2017b. “Integration methods and
optimization algorithms”. In: Advances in Neural Information Processing Systems
(NIPS).

Shalev-Shwartz, S. and T. Zhang. 2013. “Stochastic dual coordinate ascent methods for
regularized loss minimization”. The Journal of Machine Learning Research (JMLR).
14: 567–599.

Shalev-Shwartz, S. and T. Zhang. 2014. “Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization”. In: Proceedings of the 31st International
Conference on Machine Learning (ICML).

Shi, B., S. S. Du, M. I. Jordan, and W. J. Su. 2021. “Understanding the acceleration
phenomenon via high-resolution differential equations”. Mathematical Programming:
1–70.

Shi, B., S. S. Du, W. Su, and M. I. Jordan. 2019. “Acceleration via Symplectic Discretiza-
tion of High-Resolution Differential Equations”. In: Advances in Neural Information
Processing Systems (NeurIPS).

Shi, Z. and R. Liu. 2017. “Better worst-case complexity analysis of the block coordi-
nate descent method for large scale machine learning”. In: 16th IEEE International
Conference on Machine Learning and Applications (ICMLA).

Sidi, A. 1986. “Convergence and stability properties of minimal polynomial and reduced
rank extrapolation algorithms”. SIAM Journal on Numerical Analysis. 23(1): 197–209.

186 References

Sidi, A. 1988. “Extrapolation vs. projection methods for linear systems of equations”.
Journal of Computational and Applied Mathematics. 22(1): 71–88.

Sidi, A. 1991. “Efficient implementation of minimal polynomial and reduced rank ex-
trapolation methods”. Journal of Computational and Applied Mathematics. 36(3):
305–337.

Sidi, A. 2008. “Vector extrapolation methods with applications to solution of large
systems of equations and to PageRank computations”. Computers & Mathematics
with Applications. 56(1): 1–24.

Sidi, A. 2017a. “Minimal polynomial and reduced rank extrapolation methods are related”.
Advances in Computational Mathematics. 43(1): 151–170.

Sidi, A. 2017b. Vector extrapolation methods with applications. SIAM.
Sidi, A. 2019. “A convergence study for reduced rank extrapolation on nonlinear systems”.

Numerical Algorithms: 1–26.
Sidi, A. and J. Bridger. 1988. “Convergence and stability analyses for some vector

extrapolation methods in the presence of defective iteration matrices”. Journal of
Computational and Applied Mathematics. 22(1): 35–61.

Sidi, A., W. F. Ford, and D. A. Smith. 1986. “Acceleration of convergence of vector
sequences”. SIAM Journal on Numerical Analysis. 23(1): 178–196.

Sidi, A. and Y. Shapira. 1998. “Upper bounds for convergence rates of acceleration
methods with initial iterations”. Numerical Algorithms. 18(2): 113–132.

Siegel, J. W. 2019. “Accelerated first-order methods: Differential equations and Lyapunov
functions”. arXiv:1903.05671.

Smith, D. A., W. F. Ford, and A. Sidi. 1987. “Extrapolation methods for vector sequences”.
SIAM review. 29(2): 199–233.

Solodov, M. V. and B. F. Svaiter. 1999a. “A hybrid approximate extragradient–proximal
point algorithm using the enlargement of a maximal monotone operator”. Set-Valued
Analysis. 7(4): 323–345.

Solodov, M. V. and B. F. Svaiter. 1999b. “A hybrid projection-proximal point algorithm”.
Journal of convex analysis. 6(1): 59–70.

Solodov, M. V. and B. F. Svaiter. 2000. “Error bounds for proximal point subproblems
and associated inexact proximal point algorithms”. Mathematical Programming. 88(2):
371–389.

Solodov, M. V. and B. F. Svaiter. 2001. “A unified framework for some inexact proximal
point algorithms”. Numerical functional analysis and optimization. 22(7-8): 1013–
1035.

Stiefel, E. 1952. “Methods of conjugate gradients for solving linear systems”. Journal of
Research of the National Bureau of Standards. 49: 409–435.

Straeter, T. A. 1971. “On the extension of the davidon-broyden class of rank one,
quasi-newton minimization methods to an infinite dimensional Hilbert space with
applications to optimal control problems”. Tech. rep.

Sturm, J. F. 1999. “Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones”. Optimization Methods and Software. 11–12: 625–653.

References 187

Su, W., S. Boyd, and E. Candes. 2014. “A differential equation for modeling Nesterov’s
accelerated gradient method: Theory and insights”. In: Advances in Neural Information
Processing Systems (NIPS).

Süli, E. and D. F. Mayers. 2003. An introduction to numerical analysis. Cambridge
university press.

Sun, B., J. George, and S. Kia. 2020. “High-Resolution Modeling of the Fastest First-
Order Optimization Method for Strongly Convex Functions”. In: Proceedings of the
59th Conference on Decision and Control (CDC).

Sundararajan, A., B. Van Scoy, and L. Lessard. 2020. “Analysis and design of first-order
distributed optimization algorithms over time-varying graphs”. IEEE Transactions
on Control of Network Systems. 7(4): 1597–1608.

Taylor, A. and F. Bach. 2019. “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions”. In: Proceedings of the 32nd Confer-
ence on Learning Theory (COLT).

Taylor, A. and Y. Drori. 2021. “An optimal gradient method for smooth strongly convex
minimization”. arXiv:2101.09741.

Taylor, A., B. Van Scoy, and L. Lessard. 2018a. “Lyapunov functions for first-order
methods: Tight automated convergence guarantees”. In: Proceedings of the 35th
International Conference on Machine Learning (ICML).

Taylor, A. B., J. M. Hendrickx, and F. Glineur. 2017a. “Exact worst-case performance of
first-order methods for composite convex optimization”. SIAM Journal on Optimiza-
tion. 27(3): 1283–1313.

Taylor, A. B., J. M. Hendrickx, and F. Glineur. 2017b. “Performance estimation toolbox
(PESTO): automated worst-case analysis of first-order optimization methods”. In:
Proceedings of the 56th Conference on Decision and Control (CDC).

Taylor, A. B., J. M. Hendrickx, and F. Glineur. 2017c. “Smooth strongly convex inter-
polation and exact worst-case performance of first-order methods”. Mathematical
Programming. 161(1-2): 307–345.

Taylor, A. B., J. M. Hendrickx, and F. Glineur. 2018b. “Exact worst-case convergence
rates of the proximal gradient method for composite convex minimization”. Journal
of Optimization Theory and Applications. 178(2): 455–476.

Teboulle, M. 2018. “A simplified view of first order methods for optimization”. Mathe-
matical Programming. 170(1): 67–96.

Toh, K.-C., M. J. Todd, and R. H. Tütüncü. 2012. “On the implementation and usage of
SDPT3–a Matlab software package for semidefinite-quadratic-linear programming, ver-
sion 4.0”. In: Handbook on semidefinite, conic and polynomial optimization. Springer.
715–754.

Toth, A. and C. Kelley. 2015. “Convergence analysis for Anderson acceleration”. SIAM
Journal on Numerical Analysis. 53(2): 805–819.

Tseng, P. 2008. “On accelerated proximal gradient methods for convex-concave optimiza-
tion”. url: http://www.mit.edu/~dimitrib/PTseng/papers.html.

http://www.mit.edu/~dimitrib/PTseng/papers.html

188 References

Tseng, P. 2010. “Approximation accuracy, gradient methods, and error bound for struc-
tured convex optimization”. Mathematical Programming. 125(2): 263–295.

Tyrtyshnikov, E. E. 1994. “How bad are Hankel matrices?” Numerische Mathematik.
67(2): 261–269.

Van Scoy, B., R. A. Freeman, and K. M. Lynch. 2017. “The fastest known globally
convergent first-order method for minimizing strongly convex functions”. IEEE
Control Systems Letters. 2(1): 49–54.

Vandenberghe, L. and S. Boyd. 1999. “Applications of semidefinite programming”. Applied
Numerical Mathematics. 29(3): 283–299.

Villa, S., S. Salzo, L. Baldassarre, and A. Verri. 2013. “Accelerated and inexact forward-
backward algorithms”. SIAM Journal on Optimization. 23(3): 1607–1633.

Walker, H. F. and P. Ni. 2011. “Anderson acceleration for fixed-point iterations”. SIAM
Journal on Numerical Analysis. 49(4): 1715–1735.

Wibisono, A., A. C. Wilson, and M. I. Jordan. 2016. “A variational perspective on
accelerated methods in optimization”. In: Proceedings of the National Academy of
Sciences.

Wilson, A. C., B. Recht, and M. I. Jordan. 2021. “A Lyapunov Analysis of Accelerated
Methods in Optimization”. The Journal of Machine Learning Research (JMLR).
22(113): 1–34.

Wynn, P. 1956. “On a device for computing the em(Sn) transformation”. Mathematical
Tables and Other Aids to Computation. 10(54): 91–96.

Xiao, L. 2010. “Dual Averaging Methods for Regularized Stochastic Learning and Online
Optimization”. The Journal of Machine Learning Research (JMLR). 11: 2543–2596.

Zhang, G., X. Bao, L. Lessard, and R. Grosse. 2021. “A unified analysis of first-order
methods for smooth games via integral quadratic constraints”. The Journal of Machine
Learning Research (JMLR). 22(103): 1–39.

Zhou, K., Q. Ding, F. Shang, J. Cheng, D. Li, and Z.-Q. Luo. 2019. “Direct acceleration of
SAGA using sampled negative momentum”. In: Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics (AISTATS).

Zhou, K., F. Shang, and J. Cheng. 2018. “A Simple Stochastic Variance Reduced
Algorithm with Fast Convergence Rates”. In: Proceedings of the 35th International
Conference on Machine Learning (ICML).

Zhou, K., A. M.-C. So, and J. Cheng. 2020. “Boosting First-order Methods by Shifting
Objective: New Schemes with Faster Worst Case Rates”. In: Advances in Neural
Information Processing Systems (NeuRIPS).

Zhou, Z. and A. M.-C. So. 2017. “A unified approach to error bounds for structured
convex optimization problems”. Mathematical Programming: 1–40.

Zhou, Z., Q. Zhang, and A. M.-C. So. 2015. “l1, p-Norm Regularization: Error Bounds
and Convergence Rate Analysis of First-Order Methods”. In: Proceedings of the 32nd
International Conference on Machine Learning (ICML).

	Introduction
	Chebyshev Acceleration
	Introduction
	Optimal Methods and Minimax Polynomials
	The Chebyshev Method
	Notes and References

	Nonlinear Acceleration
	Introduction
	Nonlinear Acceleration for Quadratic Minimization
	Regularized Nonlinear Acceleration Beyond Quadratics
	Extensions
	Globalization Strategies and Speeding-up Heuristics
	Notes and References

	Nesterov Acceleration
	Introduction
	Gradient Method and Potential Functions
	Optimized Gradient Method
	Nesterov's Acceleration
	Acceleration under Strong Convexity
	Recent Variants of Accelerated Methods
	Practical Extensions
	Continuous-time Interpretations
	Notes and References

	Proximal Acceleration and Catalysts
	Introduction
	Proximal Point Algorithm and Acceleration
	Güler and Monteiro-Svaiter Acceleration
	Exploiting Strong Convexity
	Application: Catalyst Acceleration
	Notes and References

	Restart Schemes
	Introduction
	Hölderian Error Bounds
	Optimal Restart Schemes
	Robustness and Adaptivity
	Extensions
	Calculus Rules
	Restarting Other First-Order Methods
	Application: Compressed Sensing
	Notes and References

	Appendices
	Useful Inequalities
	Smoothness and Strong Convexity in Euclidean spaces
	Smoothness for General Norms and Restricted Sets

	Variations on Nesterov Acceleration
	Relations between Acceleration Methods
	Optimized Gradient Method: Forms I & II
	Nesterov's Method: Forms I, II, and III
	Nesterov's Accelerated Gradient Method (Strongly Convex Case): Forms I, II, and III

	Conjugate Gradient Method
	Optimized and Conjugate Gradient Methods: Worst-case Analyses

	Acceleration Without Monotone Backtracking
	FISTA without Monotone Backtracking
	Another Method without Monotone Backtracking

	On Worst-case Analyses for First-order Methods
	Principled Approaches to Worst-case Analyses
	Worst-case Analysis as Optimization/Feasibility Problems
	Analysis of Gradient Descent via Linear Matrix Inequalities
	Linear Convergence of Gradient Descent
	Potential Function for Gradient Descent

	Accelerated Gradient Descent via Linear Matrix Inequalities
	Notes and References

	Acknowledgements
	References

